
The Multidimensional Filter Diagonalization Method

m
u
m
(

fic to

Journal of Magnetic Resonance144,343–356 (2000)
doi:10.1006/jmre.2000.2023, available online at http://www.idealibrary.com on
I. Theory and Numerical Implementation

Vladimir A. Mandelshtam1

Chemistry Department, University of California, Irvine, California 92697-2025

Received August 4, 1999; revised January 12, 2000

The theory and numerical aspects of the recently developed
multidimensional version of the filter diagonalization method

community, also proposing a number of applications speci
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(FDM) are described in detail. FDM can construct various “er-
satz” or “hybrid” spectra from multidimensional time signals.
Spectral resolution is not limited by the time-frequency uncer-
tainty principle in each separate frequency dimension, but rather
by the total joint information content of the signal, i.e., Ntotal 5
N1 3 N2 3 . . . 3 ND, where some of the interferometric dimen-
sions do not have to be represented by more than a few (e.g., two)
time increments. It is shown that FDM can be used to compute
various reduced-dimensionality projections of a high-dimensional
spectrum directly, i.e., avoiding construction of the latter. A sub-
sequent paper (J. Magn. Reson. 144, 357–366 (2000)) is concerned
with applications of the method to 2D, 3D, and 4D NMR
experiments. © 2000 Academic Press

INTRODUCTION

The filter diagonalization method (FDM) was origina
designed by Neuhauser (1) for iterative diagonalization of larg

atrices which arise in quantum dynamics calculations w
sing a time-dependent approach. Later it was substan
odified and improved in a similar framework (see, e.g.,

2) and references therein). Most importantly for the pre
paper, Wall and Neuhauser realized (3) that the method cou
be reformulated and split into two independent steps, nam
generation of a quantum time correlation function and
spectral analysis (orharmonic inversion). In this new formu
lation FDM is suitable for spectral analysis of a general ex
imentally measured time signal, simply by ignoring the
step of signal generation. FDM was conceptually new
potentially very promising, but its implementation was num
ically inefficient. In Ref. (4) Mandelshtam and Taylor refo
mulated FDM for the conventional problem of processin
time signal defined on an evenly spaced time grid and fou
way to significantly improve its performance. FDM has si
found many applications in diverse fields and in particula
processing NMR time signals (5–11). In Ref. (7) we gave a
detailed and systematic presentation of 1D FDM to the N

1 E-mail: mandelsh@uci.edu.
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NMR. Extension of the 1D FDM version of Ref. (4) to a mode
2D case was presented by Mandelshtam and Taylor (12) and
used to treat several NMR experiments (5, 6). We have re
cently improved the method further by introducing the ide
“averaging” several FDM calculations and applied the
proved algorithm to homonuclear 2DJ spectra (10, 11). Inde-
pendently, Neuhauser and co-workers (8, 9) presented a relate
version of 2D FDM and applied it to a conventional CO
experiment, computing an absolute-value presentation o
phase-sensitive data. In our view, applications of 2D FDM
such spectra withdirect productpeak patterns cannot genera
lead to an enormous resolution enhancement (or an equi
significant reduction of the necessary signal size) compar
conventional strategies that analyze the spectra by proce
1D slices of the 2D signal. The reason is simply that in
second dimension of, say, the COSY experiment, both
information content of the signaland its complexity (the num
ber of parameters required to characterize it) are increase
to the large number of cross peaks and their 2D mult
structure. As will become clear, in FDM it is advantageou
minimize the total number of signal peaksK, so that they ar
dominated by the total number of measured time pointsNtotal 5
N1 3 N2 3 . . . 3 ND. It is also advantageous to minimize
number of peaks with degenerate frequencies (those that
appear, for example, along a single trace in one of the ind
dimensions). In certain 2D NMR experiments, includ
HSQC and 2DJ spectroscopy and their possible combinat
in more than two dimensions, the number of peaks doe
increase multiplicatively when new time dimensions are in
duced, and the direct product patterns do not occur. These
experiments are therefore favorable for processing by mu
mensional FDM. In the subsequent paper (13), here reference

s Paper II, these experimental implementations are desc
s well as application to a TOCSY experiment, in which
umber of peaksis multiplicative. Paper II also shows how
igher dimensional experiment can be used to project o
impler spectrum.
The quantum mechanical language and notation used

usly to derive FDM (3, 4, 12) is convenient and so are
1090-7807/00 $35.00
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tained in the present paper with some modifications and adap-
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344 VLADIMIR A. MANDELSHTAM
tations for the multidimensional case. In the Appendix we
a summary of the notation and define the symbols we use
the sake of brevity, we often assume that the reader is fam
with our previous papers (4, 7) on 1D FDM.

We start by introducing a general complex valued D-dim
ional time signalc(nW ) [ c(n1t 1, n2t 2, . . . , nDtD), wherenW is

the time vector, defined on an equidistant time grid. We
also call these time vectorsnatural times.

The total number of the natural time points,Ntotal 5 N1 3
N2 3 . . . 3 ND, is only limited by instrument time and t
omputer disk capacity and does not usually exceed a gig
f data. While the number of the acquisition time pointsN1 (we

use this convention as it is more convenient for multidim
sional signals) may be very large (say, of order ofN1 ;
103–104), the number of time points in each of the ot

imensions is strictly limited by the total experiment time
o is usually far less.
It is crucial to note that the spectral resolution of the c

entional signal processing methods based on sequenti
lications of Fourier transform (FT) to the 1D slices of
-dimensional signal is limited by the FT uncertainty princ

n each dimension, i.e.,

dFl ,
1

Nlt l
. [1]

n addition, an absorption-mode spectrum is always des
hich in the 1D case is obtained by simply taking the real
f the FT spectrum after it is correctly phased; in 2D N
urely phase-modulated signals give rise to mixed-p
“phase-twist”) lineshapes in which neither the real nor
maginary part of a 2D FT spectrum can be phased to
esired double-absorption lineshape (14). Absorption-mod
pectra can be obtained from a pair of amplitude-modu
ignals or from a pair of N- and P-type data sets by ta
ppropriate linear combinations (15). This necessitates usi
ata sets twice as large. In 3D NMR the triple-absorp

ineshape is obtained using by 22 bigger sets and so on. No
though that in some experiments, as in 2DJ, the hypercomple
signals are unavailable, so that only absolute-value spect
be obtained. The skew 1D 45° projection of a 2D abso
value J spectrum (16), for example, leads to very poor re
ution. Even if the FT in one or two dimensions is replaced
inear prediction (LP) followed by FT of the extended
ignals, usually the situation does not change dramati
ith these conditions a 4D experiment is extremely expen
hile a 5D NMR spectrum remains a thing of fantasy, as

otal signal size must be unfeasibly huge to achieve even c
requency resolution.

In this paper we describe how various highly resolv
educed-dimensionality, absorption-mode spectral projec
f the multidimensional spectra can be obtained from pu
hase-modulated signals. As demonstrated in Paper II
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two) time points in some of the interferometric dimensio
This compression is achieved by applying FDM to the f
integrated, i.e., multidimensional harmonic inversion prob
(HIP).

WHAT IS HIP?

A fully integrated D-dimensional HIP can be defined as
parametric fit of the full D-dimensional data setc(nW ),

c~nW ! 5 O
k51

K

dke
2inWvW k ; O

k51

K

dkexp@2i O
l51

D

nlt lv lk#, [2]

here vW k [ (v 1k, v 2k, . . . , vDk) are vectors of unknow
complex frequencies,v lk 5 2pf lk 2 ig lk, and dk, unknown
complex amplitudes. We will often refer to a pair (vW k, dk) as
a spectral poleand the set {vW k, dk} as a line list. The tota

umber of unknown complex parameters in the line list witK
pectral poles is (D1 1)K. This formulation of HIP is simila
o those proposed by others for a 2D spectral analysis (17–20).
n the latter case the authors used models with adirect produc
et of frequencies, {v 1k, v 2k9, dkk9}, k 5 1, 2, . . . ,K 1, k9 5

1, 2, . . . , K 2, so that in the 2D plane the unknown spec
features would form a rectangularK 1 3 K 2 grid with total
K 1 1 K 2 1 K 1K 2 number of unknowns. However, as w
become clear later, this model with certain constraints is
similar to Eq. [2] with D5 2. Although it is convenient to sta
the presentation of multidimensional FDM with Eq. [2],
reasons explained below, in the numerical implementatio
FDM to noisy data, we need not construct the line list itse
obtain the spectrum, so the actual form of the HIP, used
as a reference, will be irrelevant.

Generally speaking, Eq. [2] corresponds to a nonlinea
timization problem with totally (D 1 1)K complex fitting
parameters. Because of this nonlinearity the exact soluti
Eq. [2] may not exist at all. Even worse, an approxim
solution might not be unique. As such, even for small data
solving Eq. [2] might be a very challenging project. Fo
nately, Eq. [2] can be recast as an eigenvalue problem (or
precisely, as a family of generalized eigenvalue proble
partially avoiding these potential difficulties. In particu
existence and uniqueness of the solution for an eigen
problem are usually guaranteed.

If the HIP, Eq. [2], were to be solved by making aglobal fit
of c(nW ), the parameterK would be quite important to know
advance in order to avoid dealing with unnecessarily large
ill-conditioned matrices (overfit), on one hand, or solving
sequence of HIPs with ever increasingK, starting with a sma
K (underfit) until the result converges, on the other hand.
is often the case when high-resolution methods (e.g., LP
used. In multidimensional FDM, just as in the 1D case (4, 7),
he knowledge of K is irrelevant,as the spectral analysis
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345MULTIDIMENSIONAL FILTER DIAGONALIZATION
will never appear in the formulas below. Instead, the
information content of the signal will unambiguously de
the average density of spectral features used in the local
tral analysis.

SPECTRAL REPRESENTATIONS OF THE LINE LIST

In principle, the line list contains all of the information ab
the signal. The problem only is that such information give
a tabular format is often hard to absorb by a visually orie
operator, especially if there are too many overlapping spe
poles. Even in the 1D case we found it essential to compli
the line list with various types of “ersatz” spectra (7).

In the 1D case a converged FT spectrum should coin
except for the noise background, with a converged FDM e
spectrum generated directly from the line list,

I ~F! 5 O
k

dk

vk 2 iG 2 2pF
, [3]

A~F! 5 Im$I ~F!%, [4]

here I (F) and A(F) stand, respectively, for complex a
bsorption spectra. The former is assumed to be phase
ectly. The smoothing parameterG is often useful to improv
he appearance of the spectra with very narrow lines. Su
moothing is equivalent to an increase of the widths of al
orentzians byG. In the formulas belowG is not shown
lthough its implementation is always obvious.
The conventional 1D NMR FIDs decay with time and the

ore it is usually assumed that allv k have negative imagina
parts. However, some complex frequencies obtained from
fit of a truncated signal may have positive imaginary parts
to either noise or imperfections of the fit. In such a case
“wrong” complex frequency is simply replaced byv*k in Eq.
[4] (see also the discussion in Ref. (7)).

Apparently, the analog of the conventional FT spectrum
[4], even when converged with respect to the length of
signal and even with an infinite signal to noise ratio (SN
might not be the most revealing spectral representation,
cially in cases of overlapping lines. However, the line list
be used to generate other types of ersatz spectra more s
for a particular situation (7).

Under the assumption of Eq. [2] the D-dimensional com
FT of the purely phase-modulated signal is given by

I ~FW ! 5 O
k

dk P
l51

D 1

v lk 2 2pFl
. [5]

Note though that unlike in the 1D case (Eq. [4]), a mult
mensional absorption-mode spectrum cannot be obtaine
taking either the real or the imaginary part ofI (FW ). Of course
l
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and P-type signals are available) be used to produce an a
tion-mode spectrum by taking certain combinations of
corresponding complex spectra. On the other hand, if a lin
exists, construction of absorption-mode spectra is q
straightforward, even in the multidimensional case (5, 6). One
example of such a spectrum reads as

A~FW ! 5 O
k

Re$dk% P
l51

D

ImH 1

v lk 2 2pFl
J , [6]

hereFW 5 (F 1, F 2, . . . , FD). Clearly, Eq. [6] is not the onl
possible representation. An alternative D-dimensional ab
tion spectrum, which has similar characteristics and is i
tical to Eq. [6] in the case of all real amplitudesdk, may be
written as

A~FW ! 5 O
k

ImH dk

v1k 2 2pF1
J P

l52

D

ImH 1

v lk 2 2pFl
J . [7]

However, the two representations might differ significan
e.g., result in different lineshapes, if numerically the am
tudesdk are complex which happens in the cases of stro
overlapping and/or non-Lorentzian peaks. Note that any p
corrections, whether constant or frequency-dependent, m
applied to the complex amplitudesdk before either formula ca
be used.

For the case of D. 2 Eqs. [5]–[7] are useful but tedious
isplay: usually 1D or 2D projections or cross section
ultidimensional spectra are plotted. As such we introd

omplex and absorption-mode 1DpW -projectionsalong a time
ector pW 5 ( p1t 1, p2t 2, . . . , pDtD) (10),

I pW~F! 5 O
k

H dk

vpWk 2 2pFJ , [8]

ApW~F! 5 Im$I pW~F!%, [9]

here thepW -projections of the frequency vectors are

vpWk 5
pWvW k

t1
;

1

t1
O

l

plt lv lk. [10]

Some important examples ofpW-projections in the 2D case are
trivial projections corresponding topW 5 (0, t2) or pW 5 (t1, 0) and
the nontrivial 45° projection (10), pW 5 (t1, 2t1). Note that ther
is no FT analog for the latter in the case of purely phase-m
lated signals. Other reduced dimensionality spectral projec
are also possible, e.g., various 2D projections of 3D or 4D sp
examples of which for real NMR data, namely,singlet-HSQC and
singlet-TOCSY, are presented in Paper II.
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346 VLADIMIR A. MANDELSHTAM
quenciesv pWk [ 2pf pWk 2 ig pWk do not necessarily have
negative or all positive imaginary parts as the signal doe
have to either decay or increase along the directionpW . While
under such conditions an FT diverges (or in the case of aJ
spectrum is exactly zero), the ersatz spectrum, Eq. [8] (wi
negativeg pWk replaced by2g pWk and, possibly with addition
smoothing), exists and can provide very useful informatio

In our previous papers (5, 6, 12) we demonstrated for some 2
cases that if the signal is not too noisy, i.e., the Loren
assumption of Eq. [2] holds, the line list is well defined and ca
extracted from the signal. If this is not the case, solution of Eq
simultaneously forall of the frequency components may not
ccurate or even well defined. Rigorously speaking, only
rojection of the line list, i.e., a set {dk, vpWk}, can be both define

uniquely and computed to high precision using small data
(10). However, we will see later that construction of well-reso
double-absorption ersatz spectra is also possible without exp
using the line list, i.e., avoiding the use of Eqs. [5]–[7].

QUANTUM MECHANICAL ANSATZ TO SOLVE THE
HIP: THE IDEAL CASE OF A NOISELESS SIGNAL

In this section we will show how to recast Eq. [2] a
generalized eigenvalue problem. We will essentially follow
derivation of Ref. (12), which, in turn, is a 2D extension of 1

DM (3, 4).
We start with the conceptually simplest (albeit not gene

ase when the HIP assumption, Eq. [2], is exact for some
umber of poles. In this case it is possible to solve the HIP

2], exactly and uniquely for the line list {dk, vW k}. Conse-
quently, for the spectral reconstruction it is possible to use
[5]–[7].

Consider an operator vectorVW 5 (V̂1, V̂2, . . . , V̂D) corre-
ponding to a set of Dcommuting non-Hermitian but symm
ic operators (Hamiltonians) with eigenvalues that coin
ith the unknown frequenciesv lk. For simplicity we assum

that we can use the same set of eigenvectorsY k,

V̂lYk 5 v lkYk, l 5 1, 2, . . . , D. [11

(It will become clear later that this assumption is relate
being able to construct a unique multidimensional line list,
creates certain conceptual and numerical difficulties.) The
envectors are orthonormalized,

~YkuYk9! 5 dkk9, [12]

with respect to the complex symmetric inner product (fuc) 5
cuf). This actually implies the complex symmetric prope

of V̂ l ,

~FuV̂lC! 5 ~CuV̂lF! 5 ~V̂lCuF! [13]
ot

ll

n
e
]

D
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e
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ite
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s.

e

o
t
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roduct does not define a norm, as it is generally com
alued, and therefore we cannot call the space formed byY k a

Hilbert space, a fact which fortunately has no direct bearin
the analysis.

We can now define a linear combination of the eigenve
weighted withdk as

F~0! 5 O
k

ÎdkYk, [14]

here called theinitial state for reasons that will become app
ent later.

The Hamiltonian vectorVW can be associated with the m
titime evolution operator,

Û~nW ! ; e2inWVW ; exp@2i O
l51

D

nlt lV̂l#. [15]

With the above definitions we have constructed a qua
“dissipative” (because the evolution operators are not uni
dynamical system. This quantum mechanical ansatz is
dimensional generalization of that invented by Wall and N
hauser (3) for 1D FDM. The spectral properties of the und
lying quantum system are implicitly defined by the spec
parameters, {vW k, dk}, of question. In particular, the time sign
can now be written as a multitime quantum autocorrela
function:

c~nW ! 5 ~F~0!uÛ~nW !F~0!!, [16]

hich can be seen if we insert the spectral representation
volution operator,

Û~nW ! 5 O
k

e2inWvW kuYk)~Yku, [17]

into Eq. [16] to recover Eq. [2]. This quantum ansatz will al
us to reformulate the HIP, Eq. [2], as a problem of diago
izing, e.g., the basic evolution operatorsÛ l 5 e2it l V̂ l whose
pectra yield the line list.
In the most general case, for two arbitrary time vectorspW 5

p1t 1, p2t 2, . . . , pDtD) andqW 5 (q1t 1, q2t 2, . . . , qDtD) we
can write a generalized eigenvalue equation

Û~ pW 1 qW !Yk 5 uk~ pW !Û~qW !Yk, [18]

where we used the propertyÛ( pW 1 qW ) 5 Û( pW )Û(qW ). Accord-
ing to Eq. [10] for thekth eigenvalue ofÛ( pW ) we have

uk~ pW ! ; e2ipWvW k ; e2it1vpWk. [19]
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eitherU( pW 1 qW ) or U(qW ), once their matrix representations
available in a suitable basis. The most obvious choice for
a basis is

F~nW ! 5 Û~nW !F~0!, nl 5 0, 1, . . . ,Ml, [20]

which we call theKrylov basis,because the vectorsF(nW ) can
also be represented as the result of repeated action o
operatorsÛ l 5 e2it l V̂ l on the initial stateF(0). The total siz
of the Krylov basis is

MKrylov 5 P
l51

D

~Ml 1 1!. [21]

Assuming that it is sufficiently large to span the signal sp
we can use it to expand akth eigenvector,

Yk 5 O
nW

@Bk#nWF~nW !. [22]

Using the symmetry property of the evolution opera
hich follows from Eq. [13] and Eq. [16] the matrix eleme
f Û( pW ) between any two Krylov vectors are given by

@U~ pW !#nWnW 9 ; ~F~nW !uÛ~ pW !F~nW 9!!

5 ~Û~nW !F~0!uÛ~ pW !Û~nW 9!F~0!!

5 ~F~0!uÛ~nW 1 nW 9 1 pW !F~0!!

5 c~nW 1 nW 9 1 pW !. [23]

hese matrix elements form aMKrylov 3 MKrylov complex symme-
ric matrix U(pW) which can be computed by Eq. [23] only if t
signalc(nW) is available at points withpl # nl # 2Ml 1 pl.

We can now rewrite the eigenvalue problem, Eq. [18], in
matrix form,

U~ pW 1 qW !Bk 5 uk~ pW !U~qW !Bk, [24]

where due to Eqs. [12] and [22] the eigenvectorsBk (which are
column vectors with elements [Bk] nW) are subject to orthono-
malization with respect to theoverlap matrixU0 [ U(0), i.e.,

B k9
T U0Bk 5 dkk9. [25]

Due to Eqs. [14] and [22] the properly orthonormali
eigenvectorsBk can be used to compute the amplitudes,

Îdk 5 O
nW

@Bk#nWc~nW !. [26]

Note that implementation of Eq. [25] is trivial only ifqW 5 0
r if the eigenvaluev lk is not degenerate, as in these ca
ch

the

e,

,

e

s

normalize thekth eigenvector. This means that if there is
reason forqW to be nonzero, e.g., if all the componentspl $ 0,
one has to chooseqW 5 0.

For a general case, orthogonalization of the eigenvec
i.e., solving Eq. [25], can be avoided by combining Eqs.
and [26] to yield

dk 5 O
k9

@S21#kk9bkbk9, [27]

with

@S#kk9 5 B k9
T U0Bk,

bk 5 O
nW

@Bk#nWc~nW !,

hich will also result in correct amplitudesdk. Note in addition
that inversion of the matrixS is not necessary: to apply E
[27] one could solve the linear system,

O
k

@S#kk9xk 5 bk9 [28]

for xk and then use the formula

dk 5 xkbk. [29]

It appears that Eq. [23] can only be used with a natural
vectorpW , i.e., corresponding to all integer values ofpl . How-
ever, as we showed in Ref. (10) if pW 5 atW with tW being natura
U( pW ) can be obtained by scaling the matrixU(tW) as

U~ pW ! ; U~atW! 5 O
k

~utWk!
aU0BkB k

TU0, [30]

where the eigenvaluesutWk and the eigenvectorsBk are obtaine
by solving

U~tW!Bk 5 utWkU0Bk,

B k
TU0Bk 5 1 [31]

Some Remarks

Equation [30] together with Eqs. [23]–[29] have an inter
ing implementation in 2DJ spectroscopy (10). Namely, ifqW 5
(0, t 1) (the case ofqW Þ 0) andpW 5 (t 1, 2t 1) we haveU( pW 1
qW ) 5 U(t 1, 0) [ U1 andU(qW ) 5 U(0, t1). The latter matrix
can be obtained fromU(0, t2) [ U2 using Eq. [30] withtW 5 (0,
t 2) anda 5 t1/t2. The correspondingpW -projection leads to th
broadband proton-decoupled proton NMR spectrum, in w
all proton multiplets collapse to sharp singlets at the chem
shifts v pWk. Note that for each collapsed multipletv pWk will be
degenerate so that the corresponding eigenvectors will n
automatically orthogonal, requiring the use of Eq. [27].
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348 VLADIMIR A. MANDELSHTAM
eigenvalue problem foruk( pW ) as well as for the frequen
projectionsv pWk. Notably, the amplitudesdk are not obtained
variationally, e.g., by solving a least-squares problem, ando
not depend on the computed frequencies. This makes
quite different from all other methods of spectral analysis.
instance, the FFT corresponds to solving a variational pro
for the amplitudes while fixing an equidistant frequency g
LP methods solve a variational problem for the predic
coefficients which can in turn be used to find the spe
parameters by solving two more least-squares problems.

Equations [23]–[30] are working expressions and can
principle, be used as are to obtain the estimates of the fre
ciesv pWk and amplitudesdk for any D-dimensional signal an
projectionpW . Various numerical methods are available to s
the generalized eigenvalue problem, Eq. [24], our metho
choice being the QZ algorithm (21) for complex general ma
trices, which is computationally competitive and accurat
the case of ill-conditioned or even singular matrices. Howe
the obvious technical difficulty, which is even worse than
the 1D case, is that the size,MKrylov ; 22D 3 Ntotal, of the

atrices involved is hardly feasible for any reasonably l
ultidimensional signalc(nW ) with a total of Ntotal 5 N1 3

N2 3 . . . 3 ND data points. This difficulty is resolved in t
ext section, where a much more efficient basis is impleme

o solve the eigenvalue problem.
A conceptual difficulty, which is not obvious, is associa
ith the construction of the complete line list {dk, vW k}, which

implicitly requires the assumption that aBk resulting from the
solution of Eq. [24] for a particularpW , is simultaneously a
eigenvector of Eq. [24] with any otherpW andqW . Only with the
latter condition satisfied, at least approximately, can the
ferent componentsv lk be “coupled” to form the eigenfr-
quency vectorvW k [ (v 1k, v 2k, . . . , vDk). Unfortunately, thi
is not generally the case unless either a model signalc(nW )
exactly satisfying the form of Eq. [2] (12) or an experimenta
signal with high SNR (5, 6) is considered.

Another reason forBk not being a unique eigenvector m
be due to a degeneracy of the eigenvalueuk( pW ). This can easil
occur in NMR spectra with cross peaks. Although, with h
SNR, an otherwise degenerate spectrum still yields a un
2D line list, for instance, by the simultaneous diagonaliza
method of Ref. (9), the latter would hardly become the meth
of choice in the case of low SNR.

We will revisit this problem in a subsequent section.

FOURIER BASIS

Our goal in this section is to solve Eq. [24] for a poss
very large data setc(nW ). The solution of the problem is esse
tially analogous to that implemented in the 1D case (3, 4, 7).
Namely, we want to introduce aFourier basis along eac
“long” dimension nl (where the largeMl causes the tot
Krylov basis to be large) by taking a small set ofKlwin equi-
distant frequenciesw l within a chosenfrequency window
M
r
m
;
n
al
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e
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n
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to transform the Krylov basis only along the long dimensi
to make the appearance of the following expressions
compact, we consider Fourier transformation of the Kry
basis along all the D dimensions (the transformation alo
“short” l th dimension being done withKlwin 5 Ml 1 1 and the
l th frequency window corresponding to thel th Nyquist range)

C~wW ! ; C~w1, w2, . . . , wD!

5 O
nW

einWwWF~nW !

; O
n150

M1

ein1t1w1 O
n250

M2

ein2t2w2. . . O
nD50

MD

einDtDwDF~nW !,

2pf lmin , w l , 2pf lmax. [32]

The resulting Fourier basisC(wW ) in the D-dimensional windo
has sizeKwin 5 K 1win 3 K 2win 3 . . . 3 KDwin and is much
smaller than the original Krylov basis. As was argued for
1D case (3, 4, 7), the Fourier subspace is onlylocally complete
i.e., it is “good” for a small subspace of eigenvectors co
sponding to the chosen frequency window. That is, it is
pected that thoseY k, which are simultaneously the eigenv-
tors of the operatorsV̂ l with eigenvaluesv lk 5 2pf lk 2 ig lk

satisfyingf lmin , f lk , f lmax, l 5 1, 2, . . . , D, can be expand
in the window basis as

Yk 5 O
wW

@Bk#wWC~wW !, [33]

here as in Eq. [32] the summation is carried out overKwin 5

1win 3 K 2win 3 . . . 3 KDwin values ofwW . The numberKlwin of
he frequency valuesw l in the l th window does not have to
an adjustable parameter of the method. It is usually ch
according to theinformation contentof the finite signalc(nW )
(i.e., its extension in the corresponding dimension) or th
the Krylov subspace {F(nW )} ( 4),

Klwin 5 r~Ml 1 1!~ f lmax 2 f lmin!t l, [34]

with r being usually chosen between 1 and 1.2. The maxi
Klwin is equal toMl 1 1 (the number of Krylov basis functio
n the l th dimension) which would correspond to the maxim
ossible frequency interval, namely, the spectral w
Nyquist range), SWl 5 1/t l . Note that for long dimension

the frequency interval is always chosen to be much less
the spectral width, so thatKlwin ! Ml . This means that we d
not usually use the total information content of the signal
price to pay for both the enormous reduction of the nume
effort and the necessity to make the algorithm numeric
stable.

Implementation of the Fourier basis is analogous to th
Refs. (4, 7) and for the D5 1 case the resulting expressions
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obtained by using the definition of the Fourier basis, Eq. [
and the result of Eq. [23],

@U~ pW !#wW wW 9 ; ~C~wW !uÛ~ pW !C~wW 9!!

5 O
nW

O
nW 9

c~nW 1 nW 9 1 pW !einWwWeinW 9wW 9, [35]

where as in Eq. [32] the multiple summations are carried
over nl , n9l 5 0, 1, . . . ,Ml for eachl 5 1, 2, . . . , D.

Equation [35] is, in principle, a working expression,
though quite expensive to evaluate numerically. Fortuna
we can get rid of half of the summations in Eq. [35] by fi
noticing that the double-Fourier transformation along e
dimension is identical to that of the 1D signal (4, 7):

U~. . . , pl, . . .!~. . .,w l,. . .!~. . .,w9l,. . .!

5 . . . O
nl50

Ml O
n9l50

Ml

einlt lw lein9lt lw9l. . .

3 . . . c~. . . , nl 1 n9l 1 pl, . . .!, [36]

where variables irrelevant to thel th dimension are suppress
Now substitutingnl 3 nl 1 n9l and then evaluating the su
over n9l we obtain

U~. . . , pl, . . .!~. . .,w l,. . .!~. . .,w9l,. . .!

5 . . . Ŝl O
s l50,1

eis l@t l~Ml11!~w9l2w l!1p#

1 2 eit l~w9l2w l!

3 O
nl5s l~Ml11!

~s l11! Ml

einlt lw l. . . c~. . . , nl 1 pl, . . .!, [37]

where Ŝl defines the symmetrization operator over the v-
ablesw l , w9l :

Ŝlg~w l, w9l! 5 g~w l, w9l! 1 g~w9l, w l!. [38]

quation [37] is correct for all choices ofw l andw9l , except fo
the singularity arising atw l 5 w9l . To obtain a numericall
practical expression for this singular case we evaluate thew l 3
w9l limit leading to

U~. . . , pl, . . .!~. . .,w l,. . .!~. . .,w l,. . .!

5 . . . O
nl50

2Ml

einlt lw l

3 ~Ml 2 uMl 2 nlu 1 1!. . . c~. . . , nl 1 pl, . . .!.

[39]
],

ut

y,
t
h

.

i

indices, so implementation of Eqs. [37]–[39] is straight
ward. As such forw l Þ w9l , l 5 1, 2, . . . , D we can write

@U~ pW !#wW wW 9 5 O
s150,1

. . . O
sD50,1

3 HP
l51

D

Ŝl

eis l@t l~Ml11!~w9l2w l!1p#

1 2 eit l~w9l2w l! J
3 O

n15s1~M111!

~s111! M1

. . . O
nD5sD~MD11!

~sD11!/MD

einWwWc~nW 1 pW !.

[40]

s explained above, the singular cases are handled usin
39]. For example, forw1 5 w91 Eq. [40] is rewritten as

@U~ pW !#wW wW 9 5 O
s250,1

. . . O
sD50,1

3 HP
l52

D

Ŝl

eis l@t l~Ml11!~w9l2w l!1p#

1 2 eit l~w9l2w l! J
3 O

n150

2M1

~M1 2 uM1 2 n1u 1 1!

3 O
n25s2~M211!

~s211! M2

. . . O
nD5sD~MD11!

~sD11! MD

einWwWc~nW 1 pW !,

[41]

ith similar expressions to treat other singularities. Finally
wW 5 wW 9, i.e., the diagonal elements of theU matrix, we have

@U~ pW !#wW wW 5 O
n150

2M1

~M1 2 uM1 2 n1u 1 1!

3 O
n250

2M2

~M2 2 uM2 2 n2u 1 1!. . .

3 O
nD50

2MD

~MD 2 uMD 2 nDu 1 1!einWwWc~nW 1 pW !,

[42]

hich is simply a D-dimensional FT of the signalc(nW 1 pW) with
symmetric triangular apodization function in each dimens
Equation [32] defines the transformation from the Krylov v

ors F(nW) to the Fourier basisC(wW). According to this transfo
mation the formula for the amplitudes, Eq. [26], is rewritten

Îdk 5 O
wW

@Bk#wW O
n150

M1 O
n250

M2

. . . O
nD50

MD

einWwWc~nW !, [43]
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from Eq. [24] define the expansion of thekth eigenvectorY k in
terms of the Fourier basis functionsC(wW ), Eq. [33].

To conclude this section we mention some obvious tech
aspects of implementing Eqs. [40]–[43].

First, the multidimensional FTs ofc(nW ) should be carried o
by appropriate FFT algorithms, which can be impleme
using the globally equidistant grid of frequency pointsw l in
eachl th dimension.

Second, once FT ofc(nW ) is computed, FT ofc(nW 1 pW ) is
obtained recursively. For example, this can be seen from
relationship

O
n50

M

einwc~n 1 1! 5 @O
n50

M

einwc~n! 2 c~0!#e2iw

1 c~M 1 1!eiMw.

Third, Eq. [43] is computationally very inexpensive as
corresponding Fourier sum has been already computed to
uate U0 (see Eq. [40]). Note, however, that there exis
potentially more accurate expression for a coefficientdk, which

epends on the corresponding frequency vectorvW k (12).

EXISTENCE AND UNIQUENESS OF THE SOLUTION

As we already mentioned, Eq. [2] corresponds to a nonl
multiparameter optimization problem. Uniqueness or even
tence of its solution is not always obvious and, in fact, f
general finite D-dimensional signal we can only show that a
pW-projection of the line list exists due to the existence of
corresponding solution of Eq. [24]. This is already a very im
tant aspect as it allows us to obtain useful spectral inform
from the multidimensional signals which would not be avail
otherwise. Of course, the projected line list, i.e., {vpWk, dk}, k 5 1,
2, . . . ,K, is still a function of the size of the signal. In particu
the total number of polesK that can be produced by FDM depe
on the signal size,Ntotal 5 N1 3 N2 3 . . . 3 ND. The reaso
simply is that, due to the noise always present in the experim
signal, it is never a particular finite sum of sinusoidal terms
fixedK as manifested by Eq. [2]. The numberK is dictated by th
information content of the finite signal. In the FDM frameworK
is limited by MKrylov (see Eq. [21]), on one hand, but gener
cannot be less thanMKrylov due to the noise. Thus for a gene
noisy signal we can safely write

K 5 MKrylov ; 22D 3 Ntotal. [44]

Equation [44] essentially eliminates the problem of choo
the “right” K, so typical in all otherhigh-resolutionmethods
based on a parametric fit.

It is useful to mention the case when the complete solu
(in addition to the projections) is unique. If a signal does h
exactly the form of Eq. [2] with particular fixedK 5 K 0 and
zero noise, then forMKrylov $ K the Krylov basis become
al

d

he

al-
a

ar
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a
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e
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n

e

tal
h

l
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a unique set of eigenvectorsBk. These eigenvectors then-
agonalize the matrix of any evolution operator, in particu
that of Û l 5 e2it l V̂ l. Therefore we have,

e2it lv lk 5
B k

TU lBk

B k
TU0Bk

, [45]

which, in principle, yields the whole line list {vW k, dk}. Again,
one has to be careful when dealing with degenerate freque
v lk, typical for some NMR experiments like 2D COSY w
pW 5 (0, t 2) or pW 5 (t 1, 0). In Ref. (9) the authors propose
a procedure called “simultaneous diagonalization,” base
the Jacobi method, to overcome the degeneracy problem.
ever, such a degeneracy could be avoided by, e.g., avoidin
wrong choices for the projection vectorpW or by choosing sma
windows allowing only nondegenerate frequencies. There
degeneracy alone does not make the solution nonuniq
long as Eq. [2] holds. Another question concerns the robus
of the FDM solution with respect to small variations of
input data (e.g., an experimental noise) that destroys the
of Eq. [2] corresponding to a finiteK. It is definitely quite
robust for 1D signals (4, 7), where the problem of “couplin
the frequency components” does not occur. For D. 1 it seem
not to be the case. In practice, only a signal with high SNR
fits Eq. [2] well can be inverted to yield a reliable line list as
showed in Refs. (5, 6, 12). Note though that even with mo

rate noise Eq. [45], beingnonvariational,is relatively inac
urate since the eigenvectorsBk are very sensitive to the sm

variations of theU matrices. In Refs. (5, 6, 12) a somewha
more sophisticated procedure was implemented to assigv 1k

to the rightv 2k, each computed variationally. This proced
was based on using several sets {uk( pW ), dk} with different pW
and the relationuk( pW 1 qW ) 5 uk( pW )uk(qW ). We do not describ
his procedure in detail since it will also fail for very no
ignals and since we have found a better solution (11) de-
cribed below.
For general noisy signals the assumption that the Ham

ians V̂ l commute does not imply that their finite mat
representations do, and so the eigenvector sets for differpW
may differ significantly. In such a case the simultaneous
agonalization based on the Jacobi method of Ref. (9) may be
one way to attack the problem. However, there is no guar
that this method converges at all, as it is essentially a nonl
optimization of the kind we are trying to avoid by using o
linear algebraic techniques to fit the data. In the next sectio
describe in detail another approach for dealing with the s
problem which has proven to be quite reliable (11).

SPECTRAL RECONSTRUCTION USING GREEN’S
FUNCTIONS: THE GENERAL CASE OF NOISY SIGNALS

1D Projections and Cross Sections

For a natural time vectorpW calculation of the projection is
simple as solving Eq. [24]. However, as we already discu
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diagonalizing one of the basic evolution operatorsUl , a usefu
projection might not correspond to a naturalpW with all com-
ponentspl being both integer and small (to avoid the fold
problem) as the time incrementst l are often quite different.

One nontrivial and very useful example of apW -projection is
the 45° projection of a 2DJ spectrum, in which the proto
multiplets collapse to single peaks at the frequencies o
proton chemical shifts. As we demonstrated in Ref. (10) a
highly resolved absorption-mode 45° projection can be
tained in the framework of FDM essentially using the appro
outlined by Eqs. [23]–[30]. In the FFT framework constructio
absorption-mode 45° projections is impossible, so only skew
projection of an absolute value 2DJ spectrum (16) can be used

In the following we generalize the procedure of calcula
the 1D projections developed in Ref. (10) for the 2DJ exper-
iment to the case of arbitrarypW and D. We slightly deviate from
Ref. (10) and the above derivation, although conceptually
methods are similar.

First we introduce thepW -projection of the Hamiltonian ve
tor in analogy with Eq. [10],

V̂pW 5
1

t1
pWVW ;

1

t1
O

l

plt lV̂l. [46]

Clearly we can write

V̂pWYpWk 5 vpWkYpWk, [47]

where for this general case we have also labeled the e
functions of V̂pW with the additional subscriptpW emphasizin
that they could be different for different Hamiltonians (due
possible degeneracies or noise), although we still assum
these Hamiltonians commute with each other.

We can now introduce aGreen’s functionor resolven
operator ĜpW(F) associated withV̂pW as

ĜpW~F! ;
1

V̂pW 2 2pF
5 O

k

uYpWk)~YpWku
vpWk 2 2pF

, [48]

where we also used the spectral representation form ass
that the eigenfunctionsY pWk are orthonormalized as in Eq. [1

Note that if we setdk 5 dpWk 5 (F(0)uY pWk)
2, the 1D comple

(or absorption-mode)pW -projections of the spectrum, Eqs.
and [9], can now be expressed via the matrix elemen
ĜpW(F):

I pW~F! 5 ~F~0!uĜpW~F!F~0!!, [49]

ApW~F! 5 Im$I pW~F!%. [50]

Given matrix representationsU l for l 5 0, 1, 2, . . . , D in
a Fourier window basisC(wW ), Eqs. [40]–[42], numerical im
e

-
h
f
5°

g

e

n-

hat

ing

of

following steps:

(i) Solve independently D generalized eigenvalue prob
for l 5 1, 2, . . . , D,

UlB lk 5 ulkU0B lk,

B lk
T U0B lk 5 1, [51]

to obtain the eigenvaluesulk [ e2it l v lk and eigenvectorsB lk.
(ii) Use v lk andB lk to construct a matrix representation

V̂( pW ) in the basis ofC(wW ),

VpW 5
1

t1
O

l

plt lV l

5
1

t1
O

l

plt l O
k

v lkU0B lkB lk
T U0,

whereV l are the corresponding matrix representations oV̂ l

in the Fourier window basis.
(iii) Solve another generalized eigenvalue problem

VpWBpWk 5 vpWkU0BpWk,

BpWk
T U0BpWk 5 1. [52]

(iv) The frequenciesv pWk and the amplitudesdpWk (see Eq
43]) are then used in either Eq. [8] or Eq. [9] (withdk replaced
by dpWk) to compute accordinglyI pW(F) or ApW(F).

Note that we do not need to use Eq. [27] here asU0 appear
in the right-hand side of the generalized eigenvalue pro
(Eq. [52]), which requires only normalization of the eigenv
tors BpWk.

The outlined procedure is numerically stable and fast.
fact that there may be many degenerate frequencies amov pWk

corresponding, for instance, to the collapsed multiplets in
45° projection of a 2DJ spectrum, does not make eitherI pW(F)
or ApW(F) nonunique. Generally, if there are several degen
eigenvaluesv pWk corresponding to a particular collapsed mu-
plet, the individual eigenvectorsBpWk are not well defined
However, the whole degenerate subspace of these eige
tors, here called thesingle-multiplet subspace,is unique, sub
ject to an orthogonal complex symmetric transformation w
this subspace. This is sufficient for the correct spectral re
struction using Eqs. [8] or [9] because the sum of amplitu
¥ k dpWk over the single-multiplet subspace is invariant under
orthogonal transformation of the eigenvectorsBpWk within the
subspace.

Since the eigenvectors within a degenerate subspace a
defined they cannot possibly be used in Eq. [45] to estimat
eigenvaluesulk 5 e2it l v lk. However, as we demonstrated
Ref. (10) for the case of 2DJ spectroscopy, one can unco
he multiplet frequencies alongt l (e.g., the acquisition tim
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lem, Eq. [51], with the matricesU l and U0 evaluated in th
educed basis of the single-multiplet subspace. The res
igenvaluesulk 5 e2it l v lk then all belong to this multiplet whi

he eigenvectorsB lk according to Eq. [43] define the individu
amplitudesdlk. These can be used to construct the mult
cross sections along thel th dimension (10).

Reconstruction of a Multidimensional Spectrum Using
a Multidimensional Green’s Function

In this subsection we explore the possibility of constructi
multidimensional spectrum in the situation when the line
{vW k, dk} is not unique or, at least, its generation is very diffic
and therefore neither Eq. [6] or [7] can be used. As was alr
discussed, this ambiguity of the line list may be caused by e
the existence of degenerate frequencies or, more genera
noise. We will show that in the frame of FDM a well-beha
D-dimensional ersatz spectrum can be generated very effic
from eigenvaluesulk [ e2itl vlk and eigenvectorsBlk computed b
olving Eq. [51]. Here again we do not require the D set
igenvectors to be the same, a fact which is indicated b
dditional subscriptl; neither do we make an attempt to const
unique, albeit approximate, set of eigenvectors by solving
igenvalue systems simultaneously (9).
An l th eigenvalue system yields its line list, i.e., the frequ

iesv lk and the amplitudesdlk. The latter are obtained usi
Eqs. [43] modified by adding the subscriptl , i.e.,

Îdlk 5 O
wW

@B lk#wW O
n150

M1 O
n250

M2

. . . O
nD50

MD

einWwWc~nW !, [53]

whereB lk satisfies the relation

Y lk 5 O
wW

@B lk#wWC~wW ! [54]

between the eigenvectorsY lk of Û l and Fourier basis fun
tions C(wW ).

Generalizing Eq. [49] we can now write an example o
2D complex spectral projection in terms of a 2D Gree
function (11),

I ~F1, F2! 5 ~F~0!uĜ1~F1!Ĝ2~F2!F~0!!

; SF~0!U 1

V̂1 2 2pF1

1

V̂2 2 2pF2

F~0!D
5 O

k,k9

Dkk9

~v1k 2 2pF1!~v2k9 2 2pF2!
, [55]

ith the cross-amplitudesDkk9 defined by

Dkk9 5 B 1k
T U0B2k9Îd1kd2k9. [56]
ng

t

a
t

t
dy
er
by

tly

f
he
t
D

-

a
s

~Y1kuY2k9! 5 B 1k
T U0B2k9, [57]

which is, in turn, a consequence of Eq. [54]. For a noiseless s
with no degeneracies the two sets of eigenvectors are exac
same and the cross-amplitude matrixDkk9 can be rearranged into
diagonal form. In such a case Eq. [55] boils down to Eq. [6
general, however, it is not diagonal due to degeneracies or
or both. It is easy to see that in the case of a perfect nois
signal, when a simultaneous diagonalization and computatio
unique set of eigenvectors is, in principle, possible, Eq. [55] t
care of the degeneracies, as it is invariant under ortho
transformations within degenerate subspaces of either of th
HamiltoniansV̂1, V̂2. This means that for construction of a
spectrum we can avoid the conceptually nontrivial and com
tionally time-consuming simultaneous diagonalization.

To this end we give an example of a 2D double-absorp
spectral projection modifying Eq. [55] accordingly,

A~F1, F2! 5 O
k,k9

Re$Dkk9%ImH 1

v1k 2 2pF1
J

3 ImH 1

v2k9 2 2pF2
J . [58]

Note also another possible double-absorption spectra
resentation,

A~F1, F2! 5 O
k,k9

ImH Dkk9

v1k 2 2pF1
J ImH 1

v2k9 2 2pF2
J ,

[59]

hich coincides with Eq. [58] in the case of all real cro
mplitudesDkk9.
It is worth noting that Eqs. [55], [58], and [59] have, at le

formally, direct product patterns while their derivation used
assumption of Eq. [2] with a nondirect product pattern. H
ever, numerically most of the cross-amplitudesDkk9 are nearly
zero due to mutual orthogonality of most eigenvector pair
that the two representations are nearly equivalent.

Equations [55], [58], and [59] constitute a very import
result as they allow the construction of unambiguous mu
mensional spectra. An example of implementing Eq. [59]
2D J spectrum has been given in Ref. (11) and 2D HSQC
pectrum in Paper II.

hase Correction of the Multidimensional Spectrum

As was shown in Ref. (7) for the 1D case, FDM provides
imple means to correct phase distortion due to an initial
elay (dead time). For a multidimensional signal this is a
traightforward. As such, for the 2D case, Eq. [59] is modifie



A~F , F ! 5 O ImHDkk9e
itd1v1k1it d2v2k9J
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1 2

k,k9
v1k 2 2pF1

3 ImH 1

v2k9 2 2pF2
J , [60]

for time delayst d1 andt d2 with zero time corresponding to t
rst available signal data point. Equation [60] can be der
y noticing that only the cross-amplitudesDkk9 should be

corrected using

Dkk93 Dkk9e
itd1v1k1it d2v2k9. [61]

3-1)D Simplification of 2D Spectra

Because multidimensional FDM works with the entireNtotal

5 N1 3 N2 3 . . . 3 ND data set, useful projections can
obtained in which a very short additional time dimensio
used to simplify a lower dimensionality spectrum. We h
shown how a 1D proton-decoupled proton spectrum ca
obtained from a 2DJ experiment using only four time poin
in the J dimension (10) and then directly calculating the 4

rojection. This principle is quite general and very useful.
xample, as shown in Paper II, a proton–carbon HSQC

rum can be condensed to asinglet-HSQC spectrum, in whic
ach CH pair gives rise to a sharp singlet, by a 45° proje
f a 3D HSQCJ spectrum. This particular experiment ma
o sense in the context of FT processing because (i) a
umber of increments (e.g., 32–64) in theJ dimension would
e required to achieve the required resolution, leading t
nacceptably long experiment time; and (ii) the phase-sen
5° projection vanishes while the absolute-value projec
hows poor resolution and lines with very wide wings. As s
ach “singlet” in the FT spectrum can give contours as wid

he original multiplet that gave rise to it.
By contrast, a usefulsinglet-HSQC spectrum can be obtain

sing only two time points in theJ dimension when FDM i
mployed. Very narrow absorption-mode resonances ar

ained, increasing the resolution substantially. As it is unnece
o record both N- and P-type spectra, thesinglet-HSQC spectrum
an in fact be obtained in the same total time as a conven
hase-sensitive HSQC spectrum (using FT processing).
Let us introduce the following convention for the 3D HSQJ

pectrum, in which theF1 3 F2 plane corresponds to the HSQ
spectrum, while the proton multiplets are rotated by 45° in
F1 3 F3 plane. In particular, the 2D part of the whole 3D sig
(n1t1, n2t2, 0), roughly, corresponds to the conventional

HSQC signal, whilec(n1t1, 0,n3t3), the conventional 2DJ signa
f the protons directly bound to carbon-13.
A 2D complexsinglet-HSQC spectral projection, where t

roton multiplets of the conventional HSQC spectrum
ollapsed into singlets at the proton chemical shifts, is
ormally defined as the following 2D projection of the
pectrum,
d

s
e
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e
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e
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pW 2

k
~v1k 2 v3k 2 2pFpW!~v2k 2 2pF2!

Since implementation of this formula requires constructio
a 3D line list, we rewrite it using Green’s functions simila
those used above,

I ~FpW, F2! 5 ~F~0!uĜpW~FpW!Ĝ2~F2!F~0!!

5 SF~0!U 1

V̂pW 2 2pFpW

1

V̂2 2 2pF2

F~0!D ,

[63]

where the first Green’s function corresponds to the 45° pr
tion in the 2DJ plane withpW 5 (t 1, 0, 2t 1) andV̂pW 5 V̂1 2
V̂3, while the second projects to the carbon-13 chemical
dimension.

Given matrix representationsU l for l 5 0, 1, 2, 3 in a
Fourier window basisC(wW ) (Eqs. [40]–[42]), implementatio
of Eq. [63] is summarized by the following steps.

(i) Solve independently the three generalized eigenv
problems withl 5 1, 2, 3,

UlB lk 5 ulkU0B lk,

B lk
T U0B lk 5 1, [64]

to obtain the eigenvaluesulk [ e 2it l v lk and eigenvectorsB lk.
(ii) Use {v 1k, B1k} and {v 3k, B3k} to construct a matri

representation ofV̂pW 5 V̂1 2 V̂3 in the basis ofC(wW ),

VpW 5 V1 2 V3

5 U0 O
k

~v1kB1kB 1k
T 2 v3kB3kB 3k

T !U0.

(iii) Solve another generalized eigenvalue problem,

VpWBpWk 5 vpWkU0BpWk,

BpWk
T U0BpWk 5 1. [65]

(iv) To evaluate the complexI (FpW , F 2) and double-absor-
tion A(FpW , F 2) singlet-HSQC spectra, use the formulas

I ~FpW, F2! 5 O
k,k9

Dkk9

~vpWk 2 2pFpW!~v2k9 2 2pF2!
, [66]

A~FpW, F2! 5 O
k,k9

ImH Dkk9

vpWk 2 2pFpW
J

3 ImH 1

v2k9 2 2pF2
J , [67]



where the cross-amplitudesD kk9 are
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Dkk9 5 ÎdpWkd2kB pWk
T U0B2k9,

ÎdpWk 5 O
wW

@BpWk#wW O
n150

M1 O
n250

M2 O
n350

M3

einWwWc~nW !,

Îd2k 5 O
wW

@B2k#wW O
n150

M1 O
n250

M2 O
n350

M3

einWwWc~nW !.

Analogous formulas apply to a double projection of a 4D si
resulting in a simplified 2D spectrum. For example, as show
Paper II a TOCSY spectrum, in which all 2D multiplets
completely decoupled, collapsing to singlets, can be obtain
recording additional two data sets with a singleJ increment in
each dimension and then using a double 45° projection.

REDUCTION OF NOISE ARTIFACTS BY FILTER
DIAGONALIZATION AVERAGING

An application of multidimensional FDM to noisy data
never free from imperfections, such as spurious spikes, o
well converged amplitudesdk and their phases. In addition, E
59], for example, should formally lead to a direct prod
attern with possible peaks at all points (v 1k, v 2k9) with k,

k9 5 1, 2, . . . ,Kwin within each processed frequency windo
lthough the corresponding amplitudesDkk9 must ideally be

zero for most cross peaks, they are not in practice, i.e
ersatz spectrum constructed using Eq. [59] does contain
artifacts, which could, in principle, be big depending on h
well the model of Eq. [2] fits the data. It might seem,
obvious analogy with various implementations of LP, that
could improve the appearance of the FDM ersatz spectru
analyzing each spectral feature and deciding according to
criterion whether it should be accepted or discarded. Unf
nately, our experience is quite negative in this regard, as
such method seems to work only with high SNR and in the
of narrow and isolated resonances. In this case the extra
are completely unobtrusive in any event. Hence, we give u
idea of throwing away poles.

However, another much less aggressive and seemingly s
procedure to improve the appearance of the ersatz spectra
(7, 11). It is based on multiple applications of FDM to nes
subsets of the same signal, using a progressively larger
number of time points in successive calculations. The idea h
that the true signal poles are more stable with respect to the
parameters than the noise poles and artifacts. In particula
phases of the unwanted features are sensitive to any change
signal size, leading to their random appearance in the e
spectra. As such they can be “averaged out” by summing se
ersatz spectra computed from the signals of various sizes.
ably other FDM parameters could be used in the same cont
their variation affected the appearance of the noise and art
although we found that varying signal size is a robust proce
al
in
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natural parameter for averaging is the maximum processing
along the acquisition time dimensionn1.

Note, though, another more elegant procedure, thepseudo
noise averaging,discovered after this paper was submitted
publication. It is based on exploiting the great sensitivity of
output (ersatz spectrum) to the small variations in the i
(time signal). Namely, perturbation of the signal by a sm
amountd(nW ) leads to large fluctuations,D(FW ), in the outpu
FDM spectrum. This is schematically shown by the diagr

c~nW ! 1 d~nW ! 3 FDM 3 I d~FW ! 5 I 0~FW ! 1 D~FW ! . [68]

The fluctuationsD(FW ) have essentially random appearance
the artifacts are removed by averagingI d(FW ) over sufficiently
many realizations of the pseudo-noised(nW ). It turns out tha
there is a great flexibility in choosing the distribution and
amplitude of the pseudo-noised(nW ) (as long aŝd(nW )& 5 0 and
^ud(nW )u 2& is sufficiently large) to give unique and artifact-f
averaged spectrum.

For both types of the FDM averaging described above the
news is that the computational effort is now multiplied byNFDM,
the number of the single FDM calculations, while someti
leading to only moderate improvements (a factor of=NFDM re-
duction of the artifacts, assuming their random appearance
good news is that a single FDM calculation is reasonably fa
that we can still afford such an increase of the CPU time, ev
not expecting a huge improvement. Thus FDM averaging sh
be customary in all multidimensional FDM calculations un
one finds a less time-consuming solution in the future.

SUMMARY

The present paper describes several important develop
of the multidimensional FDM. Expressions for constructio
absorption-mode spectra from purely phase-modulated
signals based on pure linear algebra are derived. In parti
FDM allows direct calculation of various reduced dimens
ality spectral projections leading under certain condition
significant simplifications of the spectra and avoiding calc
tion of both the whole multidimensional spectrum and
complete multidimensional line list. The latter seemed to
prerequisite in the earlier works on 2D FDM (4–6, 9).

Even though the multidimensional line list, i.e., the set {vW k,
dk} with vW k 5 (v 1k, v 2k, . . . , vDk), is highly desired, it
construction for severely truncated and noisy signals ma
complicated by some conceptual problems originated from
ill-defined nature of the HIP, Eq. [2]. In the FDM framewo
the problem of constructing the multidimensional line
arises when the computed eigenbases {Y lk} of the evolution
operatorsÛ l 5 e2it l V̂ l (where thel labels the time or frequen

imension) appear to be incompatible with each other, pre
ng construction of a unique basis set {Y k}. An l th basis se
with the corresponding eigenfrequenciesv lk can unambigu-



ously define only thel th projection {v lk, dlk} of the line list,
w en
c e

DM
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ing
atu

of the problem. Because these artifacts are very sensitive to either
the
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hile the problem of coupling the different projected frequ
ies v lk into a single vectorvW k remains unsolved for th

general case of truncated and noisy data.
The new Green’s function approach to construct the F

spectra, e.g., based on using Eqs. [59] and [67], overcom
problem of ambiguity of the line list. However, the result
spectra still have some artifacts due to the said ill-defined n
-

the

re

parameters of the FDM calculations or small variations in
input data, averaging allows us to reduce them below the ac
able level. Unfortunately, the FDM averaging is quite expen
and therefore might not be the optimal solution.

To conclude, in the future we will revisit these issu
namely, the line list construction and the problem of avoid
numerically expensive FDM averaging.
sis

ion
APPENDIX

Some Important Notations and Definitions

nW [ (n1t 1, n2t 2, . . . , nDtD) D-dimensional time vector
c(nW ) [ c(n1t 1, n2t 2, . . . , nDtD) NMR signal defined on an evenly spaced D-dimensional time grid

c~nW ! 5 O
k

dke
2inWvW k ; O

k

dkexp@2i O
l51

D

nlt lv lk#
D-dimensional harmonic inversion problem

vW k [ (v 1k, v 2k, . . . , vDk), v lk 5 2pf lk 2 ig lk Vector of complex frequencies
{ vW k, dk} Line list of vector frequencies and amplitudes

I ~FW ! ; I ~F1, F2, . . . , FD! 5 O
k

dk P
l51

D 1

v lk 2 2pFl

A D-dimensional complex ersatz spectrum

I pW~F! 5 O
k

dk

pWvW k/tmax 2 2pF
; O

k

dk

vpWk 2 2pF

1D spectral projection along vectorpW

(CuF) 5 (FuC) Complex symmetric inner product

V̂l 5 O
k

v lkuYk)~Yku Commuting complex symmetric Hamiltonian operators

v lk andY k Eigenvalues and eigenvectors ofV̂ l

VW [ (V̂1, V̂2, . . . , V̂D) Operator vector

Û~nW ! ; e2inWVW ; exp@2i O
l51

D

nlt lV̂l#
Discrete time evolution operator

uk(nW ) [ e2inWvW k andY k Eigenvalues and eigenvectors ofÛ(nW )

F~0! 5 O
k

ÎdkYk
Initial state

c(nW ) 5 (F(0)uÛ(nW )F(0)) Quantum mechanical ansatz
F(nW ) 5 Û(nW )F(0), nl 5 0, 1, . . . , Ml Subspace of Krylov vectors

Yk 5 O
nW

@Bk#nWF~nW ! Expansion of the eigenvectors in terms of the Krylov vectors

U(pW )] nWmW [ (F(nW )uÛ(pW )F(mW )) 5 c(nW 1 mW 1 pW ) Matrix elements of the evolution operator in the primitive Krylov ba
[U0] nWmW [ (F(nW )uF(mW )) 5 c(nW 1 mW ) Overlap matrix elements
U(pW 1 qW )Bk 5 uk(pW )U(qW )Bk, Bk

TU0Bk9 5 1 Generalized eigenvalue problem with the normalization condition

Îdk 5 ~YkuF~0!! 5 O
nW

@Bk#nWc~nW ! The amplitudes in terms of the eigenvectors

C~wW ! 5 O
n150

M1 O
n250

M2

. . . O
nD50

MD

einWwWF~nW !
Fourier basis function defined atwW [ (w1, w2, . . . , wD)

k 5 O
wW

@Bk#wWF~wW ! Expansion of the eigenvectors in the Fourier basis

[U(pW )] wW wW 9 [ (C(wW )uÛ(pW )C(wW 9)) Matrix elements of the evolution operator in the Fourier basis

V̂pW 5
1

t1
pWVW 5 O

k

vpWkuYpWk)~YpWku
pW -projection of the Hamiltonian vector and its spectral representat



1 uYpWk)~YpWku pW -projection of the Green’s function and its spectral representation
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ĜpW~F! ;
V̂pW 2 2pF

5 O
k

vpWk 2 2pF

I pW(F) 5 (F(0)uĜpW(F)F(0)) 1D complex spectral projection alongpW using the Green’s function
I (F 1, F 2) 5 (F(0)uĜ1(F 1)Ĝ2(F 2)F(0)) A 2D complex spectral projection using the 2D Green’s function
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