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The theory and numerical aspects of the recently developed
multidimensional version of the filter diagonalization method
(FDM) are described in detail. FDM can construct various “er-
satz” or *“hybrid” spectra from multidimensional time signals.
Spectral resolution is not limited by the time-frequency uncer-
tainty principle in each separate frequency dimension, but rather
by the total joint information content of the signal, i.e., Nyw =
N; X N, X -+ X Np, where some of the interferometric dimen-
sions do not have to be represented by more than a few (e.g., two)
time increments. It is shown that FDM can be used to compute
various reduced-dimensionality projections of a high-dimensional
spectrum directly, i.e., avoiding construction of the latter. A sub-

community, also proposing a number of applications specific |
NMR. Extension of the 1D FDM version of Re#)(to a model
2D case was presented by Mandelshtam and Tali®r gnd
used to treat several NMR experimeng €. We have re-
cently improved the method further by introducing the idea ¢
“averaging” several FDM calculations and applied the im
proved algorithm to homonuclear 2Dspectra 10, 1]). Inde-
pendently, Neuhauser and co-worke8s9) presented a related
version of 2D FDM and applied it to a conventional COSY
experiment, computing an absolute-value presentation of tl
phase-sensitive data. In our view, applications of 2D FDM t

sequent paper (J. Magn. Reson. 144, 357-366 (2000)) is concerned
with applications of the method to 2D, 3D, and 4D NMR
experiments.

such spectra witkirect productpeak patterns cannot generally
lead to an enormous resolution enhancement (or an equivals
significant reduction of the necessary signal size) compared
conventional strategies that analyze the spectra by process
1D slices of the 2D signal. The reason is simply that in th
second dimension of, say, the COSY experiment, both tt

The filter diagonalization method (FDM) was originallyinformation content of the signaindits complexity (the num-
designed by Neuhauset)(for iterative diagonalization of large ber of parameters required to characterize it) are increased c
matrices which arise in quantum dynamics calculations whém the large number of cross peaks and their 2D multiple
using a time-dependent approach. Later it was substantiggiyucture. As will become clear, in FDM it is advantageous tt
modified and improved in a similar framework (see, e.g., Reghinimize the total number of signal peakKs so that they are
(2) and references therein). Most importantly for the presedominated by the total number of measured time paditys =
paper, Wall and Neuhauser realiz&) that the method could N; X N, X - -- X Np. It is also advantageous to minimize the
be reformulated and split into two independent steps, namefgmber of peaks with degenerate frequencies (those that wol
generation of a quantum time correlation function and ippear, for example, along a single trace in one of the indire
spectral analysis (dnarmonic inversioh In this new formu- dimensions). In certain 2D NMR experiments, including
lation FDM is suitable for spectral analysis of a general expaSQC and 2DJ spectroscopy and their possible combination
imentally measured time signal, simply by ignoring the firgh more than two dimensions, the number of peaks does n
step of signal generation. FDM was conceptually new amacrease multiplicatively when new time dimensions are intro
potentially very promising, but its implementation was numettuced, and the direct product patterns do not occur. These ba
ically inefficient. In Ref. 4) Mandelshtam and Taylor refor- experiments are therefore favorable for processing by multid
mulated FDM for the conventional problem of processing @ensional FDM. In the subsequent papk8)( here referenced
time signal defined on an evenly spaced time grid and founc@ Paper II, these experimental implementations are describ
way to significantly improve its performance. FDM has sincgs well as application to a TOCSY experiment, in which the
found many applications in diverse fields and in particular fefumber of peakss multiplicative. Paper I also shows how a
processing NMR time signal$<1]). In Ref. (7) we gave a higher dimensional experiment can be used to project out
detailed and systematic presentation of 1D FDM to the NM&mpler spectrum.

The quantum mechanical language and notation used pre
ously to derive FDM B8, 4, 19 is convenient and so are re-
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344 VLADIMIR A. MANDELSHTAM

tained in the present paper with some modifications and adaprtain conditions such projections may need only a few (e.c
tations for the multidimensional case. In the Appendix we giievo) time points in some of the interferometric dimensions
a summary of the notation and define the symbols we use. Hdiis compression is achieved by applying FDM to the fully
the sake of brevity, we often assume that the reader is familiategrated, i.e., multidimensional harmonic inversion probler
with our previous paperst(7) on 1D FDM. (HIP).

We start by introducing a general complex valued D-dimen-
sional time signat(i) = c(ny74, N272, . .., NpTp), Whereh is WHAT IS HIP?
the time vector, defined on an equidistant time grid. We will
also call these time vectorstural times. A fully integrated D-dimensional HIP can be defined as th

The total number of the natural time pointy. = Ni X parametric fit of the full D-dimensional data s&f),
N, X --- X Np, is only limited by instrument time and the

computer disk capacity and does not usually exceed a gigabyte

of data. While the number of the acquisition time poiNts(we K & 2

use this convention as it is more convenient for multidimen- () = X die "= > deexd —i X nwyd,  [2]

sional signals) may be very large (say, of order Nf ~ k=t k=t =1

10°-10%, the number of time points in each of the other

dimensions is strictly limited by the total experiment time andhere ®, = (wy, wz, ..., wp) are vectors of unknown

so is usually far less. complex frequenciesp, = 2=f, — iy, andd,, unknown
It is crucial to note that the spectral resolution of the corcomplex amplitudes. We will often refer to a paib d,) as

ventional signal processing methods based on sequential appectral poleand the set §,, d,} as aline list. The total

plications of Fourier transform (FT) to the 1D slices of theumber of unknown complex parameters in the line list with

D-dimensional signal is limited by the FT uncertainty principlspectral poles is (B- 1)K. This formulation of HIP is similar

in each dimension, i.e., to those proposed by others for a 2D spectral analyiSisZQ.
In the latter case the authors used models widirect product
1 set of frequencies,dy, wae, de}, k=1,2, ... Ky, k' =
SF, ~ N [1] 1,2,...,K; so thatin the 2D plane the unknown spectra
1T

features would form a rectangul&; X K, grid with total

K, + K, + K;K, number of unknowns. However, as will
In addition, an absorption-mode spectrum is always desirdmicome clear later, this model with certain constraints is vel
which in the 1D case is obtained by simply taking the real pasimilar to Eq. [2] with D= 2. Although it is convenient to start
of the FT spectrum after it is correctly phased; in 2D NMRhe presentation of multidimensional FDM with Eq. [2], for
purely phase-modulated signals give rise to mixed-phassasons explained below, in the numerical implementation
(“phase-twist”) lineshapes in which neither the real nor theDM to noisy data, we need not construct the line list itself tc
imaginary part of a 2D FT spectrum can be phased to tbhétain the spectrum, so the actual form of the HIP, used on
desired double-absorption lineshap®4)( Absorption-mode as a reference, will be irrelevant.
spectra can be obtained from a pair of amplitude-modulatedGenerally speaking, Eq. [2] corresponds to a nonlinear o
signals or from a pair of N- and P-type data sets by takirtgnization problem with totally D + 1)K complex fitting
appropriate linear combinationd5). This necessitates usingparameters. Because of this nonlinearity the exact solution
data sets twice as large. In 3D NMR the triple-absorptidag. [2] may not exist at all. Even worse, an approximat
lineshape is obtained using by Bigger sets and so on. Notesolution might not be unique. As such, even for small data set
though that in some experiments, as in 2Dhe hypercomplex solving Eqg. [2] might be a very challenging project. Fortu-
signals are unavailable, so that only absolute-value spectra oately, Eq. [2] can be recast as an eigenvalue problem (or mc
be obtained. The skew 1D 45° projection of a 2D absolutprecisely, as a family of generalized eigenvalue problem:
value J spectrum 16), for example, leads to very poor resopartially avoiding these potential difficulties. In particular,
lution. Even if the FT in one or two dimensions is replaced bgxistence and unigueness of the solution for an eigenval
linear prediction (LP) followed by FT of the extended 1Dproblem are usually guaranteed.
signals, usually the situation does not change dramatically.If the HIP, Eqg. [2], were to be solved by makingybobal fit
With these conditions a 4D experiment is extremely expensivéc(i), the parameteK would be quite important to know in
while a 5D NMR spectrum remains a thing of fantasy, as tteelvance in order to avoid dealing with unnecessarily large at
total signal size must be unfeasibly huge to achieve even coatseonditioned matrices dverfi), on one hand, or solving a
frequency resolution. sequence of HIPs with ever increasikgstarting with a small

In this paper we describe how various highly resolved (underfi) until the result converges, on the other hand. Thi

reduced-dimensionality, absorption-mode spectral projectiossoften the case when high-resolution methods (e.g., LP) a
of the multidimensional spectra can be obtained from purelged. In multidimensional FDM, just as in the 1D cade?,
phase-modulated signals. As demonstrated in Paper Il untiee knowledge of K is irrelevangs the spectral analysis is
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performed locally, i.e., for a given small spectral domainKso Eq. [5] can (when, for instance, in a 2D experiment both N
will never appear in the formulas below. Instead, the totahd P-type signals are available) be used to produce an absc
information content of the signal will unambiguously definéion-mode spectrum by taking certain combinations of th
the average density of spectral features used in the local spgmresponding complex spectra. On the other hand, if a line li
tral analysis. exists, construction of absorption-mode spectra is quil
straightforward, even in the multidimensional caSeg). One
SPECTRAL REPRESENTATIONS OF THE LINE LIST example of such a spectrum reads as

In principle, the line list contains all of the information about b
the signal. The problem only is that such information given in AF) = Reldd [] Im{l}, 6]
a tabular format is often hard to absorb by a visually oriented K =1 oy — 27F,
operator, especially if there are too many overlapping spectral
poles. Even in the 1D case we found it essential to complimgpteref = (F,, Fs,

the line list with various types of “ersatz” spectr).( Ci)ossible representation. An alternative D-dimensional absor

In the 1D case a converged FT spectrum should coinCidgy, spectrum, which has similar characteristics and is idet
except for the noise background, with a converged FDM ersg{z;| i Eq. [6] in the case of all real amplitudes, may be
spectrum generated directly from the line list, written as

., Fp). Clearly, Eqg. [6] is not the only

I(F) = E#, (3] . d, ° 1
i T S 1 P

Wy — 27F, wy — 27F,
A(F) = Im{I(F)}, [4]

However, the two representations might differ significantly
where |(F) and A(F) stand, respectively, for complex ande.g., result in different lineshapes, if numerically the ampli
absorption spectra. The former is assumed to be phased ¢attesd, are complex which happens in the cases of strong|
rectly. The smoothing parametEris often useful to improve overlapping and/or non-Lorentzian peaks. Note that any pha
the appearance of the spectra with very narrow lines. Sucle@rections, whether constant or frequency-dependent, must
smoothing is equivalent to an increase of the widths of all thgplied to the complex amplituddg before either formula can
Lorentzians byI'. In the formulas belowl” is not shown be used.
although its implementation is always obvious. For the case of D> 2 Egs. [5]-[7] are useful but tedious to

The conventional 1D NMR FIDs decay with time and theredisplay: usually 1D or 2D projections or cross sections o
fore it is usually assumed that adl, have negative imaginary multidimensional spectra are plotted. As such we introduc
parts. However, some complex frequencies obtained from @mplex and absorption-mode JBprojectionsalong a time
fit of a truncated signal may have positive imaginary parts dyectorp = (pi7., P2Ta - - - » PoTo) (10),
to either noise or imperfections of the fit. In such a case the
“wrong” complex frequency is simply replaced ly in Eq.

d
[4] (see also the discussion in ReT)). I5(F) = > {w_kZ’)TF} [8]
Apparently, the analog of the conventional FT spectrum, Eq. k Rk
[4], even when converged with respect to the length of the As(F) = Im{1 ,(F)}, [9]

signal and even with an infinite signal to noise ratio (SNR),
might not be the most revealing spectral representation, espe- . L
cially in cases of overlapping lines. However, the line list Ca&%ere thep-projections of the frequency vectors are
be used to generate other types of ersatz spectra more suitable . 1
[ ituati Pwy

for a particular S|tuat|_on7(). _ _ g = — = E PIT @1 [10]

Under the assumption of Eq. [2] the D-dimensional complex L T
FT of the purely phase-modulated signal is given by

Some important examples pfprojections in the 2D case are the

. D 1 trivial projections corresponding fo= (0, ,) or p = (7, 0) and
I(F) =2 di [ o omE [5] the nontrivial 45° projection1(), p = (r,, —,). Note that there
k 1=1 K ' is no FT analog for the latter in the case of purely phase-mod

lated signals. Other reduced dimensionality spectral projectio
Note though that unlike in the 1D case (Eg. [4]), a multidiare also possible, e.g., various 2D projections of 3D or 4D spect
mensional absorption-mode spectrum cannot be obtained éxamples of which for real NMR data, namedingletHSQC and
taking either the real or the imaginary partl¢F). Of course, singletTOCSY, are presented in Paper Il.
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In the line list of an FDM projection, the theoretical frefor any two vectorsb andW. Note that the complex symmetric
quencieswy = 2mfy — iyx do not necessarily have allproduct does not define a norm, as it is generally comple
negative or all positive imaginary parts as the signal does natlued, and therefore we cannot call the space formed by
have to either decay or increase along the direcfioliVhile Hilbert space, a fact which fortunately has no direct bearing ¢
under such conditions an FT diverges (or in the case of & 2Dhe analysis.
spectrum is exactly zero), the ersatz spectrum, Eq. [8] (with allWe can now define a linear combination of the eigenvecto
negativey,, replaced by—+y; and, possibly with additional weighted withd, as
smoothing), exists and can provide very useful information.

In our previous papers(6, 19 we demonstrated for some 2D d0) = > JdY, [14]
cases that if the signal is not too noisy, i.e., the Lorentzian \ '
assumption of Eq. [2] holds, the line list is well defined and can be
gﬁﬁgiigsgyt?:;;g;ﬁhg ;?;'je?]%t;rli;?: racasr?tlstlr?mg;fni?.b[ﬁ]ere called thénitial state for reasons that will become appar-

accurate or even well defined. Rigorously speaking, only a 19[5]t later. I > . .
projection of the line list, i.e., a setl{, wy}, can be both defined . .The Hamﬂtoman vectof) can be associated with the mul-
uniquely and computed to high precision using small data Sg&me evolution operator,

(10). However, we will see later that construction of well-resolved
double-absorption ersatz spectra is also possible without explicitly ~

using the line list, i.e., avoiding the use of Egs. [5]-[7]. u(n) =

k

exd—i > nmQ]. [15]

=1

e—iﬁﬁ

QUANTUM MECHANICAL ANSATZ TO SOLVE THE
HIP: THE IDEAL CASE OF A NOISELESS SIGNAL With the above definitions we have constructed a quantu
“dissipative” (because the evolution operators are not unitar
In this section we will show how to recast Eq. [2] as alynamical system. This quantum mechanical ansatz is a |
generalized eigenvalue problem. We will essentially follow théimensional generalization of that invented by Wall and NeL
derivation of Ref. {2), which, in turn, is a 2D extension of 1D hauser 8) for 1D FDM. The spectral properties of the under-
FDM (3, 4). lying quantum system are implicitly defined by the spectre
We start with the conceptually simplest (albeit not genergbarameters, §,, d,}, of question. In particular, the time signal
case when the HIP assumption, Eqg. [2], is exact for some fintan now be written as a multitime quantum autocorrelatio
number of poles. In this case it is possible to solve the HIP, Banction:
[2], exactly and uniquely for the line listd,, @,}. Conse
quently, for the spectral reconstruction it is possible to use Egs. c(R) = (<I>(0)|U(ﬁ)d>(0)), [16]
[5HH7]-
Con-3|der an operator vect@r = (@, O, L . {1,) corre which can be seen if we insert the spectral representation of t
sponding to a set of Bommuting non-Hermitian but symmet- .
. o 4 . .~ evolution operator,
ric operators (Hamiltonians) with eigenvalues that coincide
with the unknown frequencies,. For simplicity we assume .
that we can use the same set of eigenvectars Om) = 2 e ™Y (Y, [17]
k

QY=o 1=1,2,..., D [11] into Eq. [16] to recover Eq. [2]. This quantum ansatz will allow

us to reformulate the HIP, Eqg. [2], as a problem of diagona
(It will become clear later that this assumption is related §9jng, e.g., the basic evolution operatdis = e "* whose
being able to construct a unique multidimensional line list, bdhectra yield the line list.
creates certain conceptual and numerical difficulties.) The eig-|n the most general case, for two arbitrary time vecfors
envectors are orthonormalized, (P71, PoTas « - - s Poto) @ndd = (QuTa, UoTay - - - » QoTp) WE
can write a generalized eigenvalue equation
(Yk|Yk’) = O [12]
UP + @Y= ulp)U(@) Y (18]
with respect to the complex symmetric inner produtsi/y =
(l/,l|(£)). This actually implies the complex symmetric property . .« \ve used the propery(p + §) = U(p)0(@). Accord-

of O, ing to Eq. [10] for thekth eigenvalue ofJ(p) we have

(DY) = (V|Q) = (Q¥|) [13] u(p) = e "= e o, [19]
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Solving Eq. [18] does not require the explicit knowledge dB;U,B, = 0 automatically fork # k' and one only has to
eitherU(p + §) or U(@), once their matrix representations ar@ormalize thekth eigenvector. This means that if there is nc
available in a suitable basis. The most obvious choice for sugason forg to be nonzero, e.qg., if all the componepi{s= 0,

a basis is one has to choosg = 0.

For a general case, orthogonalization of the eigenvectol
i.e., solving Eq. [25], can be avoided by combining Egs. [25
and [26] to yield

o) = 0(R)PO0), n=0,1,...,M, [20]

which we call theKrylov basis,because the vectorB(i) can
also be represented as the result of repeated action of the _1

~ o - . dy = S bbby, 27
operatorsJ, = e "™ on the initial stateD(0). The total size K kz [S™ Jucbubi [27]
of the Krylov basis is

b with
MKronv = H (MI + 1) [Zl] [S]kk’ = BIrUOBk,

=1
by, = Z [Bilac(R),
Assuming that it is sufficiently large to span the signal space, n

we can use it to expandkth eigenvector, . . . . . .
P g which will also result in correct amplitudeg. Note in addition

that inversion of the matrids is not necessary: to apply Eq.

Yie= % [Bida®(R). [22] [27] one could solve the linear system,

Using the symmetry property of the evolution operator, 2 [Slexi = b [28]
which follows from Eq. [13] and Eg. [16] the matrix elements «

of U(p) between any two Krylov vectors are given b
(P) y y 9 y for x, and then use the formula

[U(P) s = (@(R)|O(P)D(R))

= (0(MP(0)|0(PUR)P(0))

N as = It appears that Eq. [23] can only be used with a natural tim
(@(O)[U(R + A" + P)©(0)) vectorp, i.e., corresponding to all integer valuesgmf How-
=c(h+n +p). [23] ever, as we showed in ReflQ) if p = at with tﬁbeing natural,

U(p) can be obtained by scaling the mattiXt) as

dy = Xby. [29]

These matrix elements formMy,, X My, COMplex symmet

ric matrix U(pP) which can be computed by Eq. [23] only if the U(p) = U(at) = D (Uz) “UoBBTU,, [30]
signalc(n) is available at points witlp, = n, = 2M, + p,. K
We can now rewrite the eigenvalue problem, Eq. [18], in the
matrix form, where the eigenvaluas, and the eigenvectoB, are obtained
by solving
U(p + @)Bx = u(p)U(d)B, [24]

U(D)B\ = unUoB,,
where due to Egs. [12] and [22] the eigenvec®{gwhich are BIUB, = 1 [31]

column vectors with element8[];) are subject to orthoner
malization with respect to theverlap matrixU, = U(0), i.e., Some Remarks

. Equation [30] together with Egs. [23]-[29] have an interest
BiUoBi = - [25] ing implementation in 20 spectroscopyl0). Namely, ifg =
(0, ) (the case of # 0) andp = (7,, —7,) we haveU(p +
Due to Egs. [14] and [22] the properly orthonormalizeQ) = U(r,, 0) = U, andU(g) = U(0, ,). The latter matrix
eigenvectord, can be used to compute the amplitudes,  ¢an be obtained frond(0, 7,) = U, using Eq. [30] witht = (O,
7,) anda = 7,/7,. The corresponding-projection leads to the
\,‘dﬁk = > [ByJsc(R). [26] broadband proton-decoupled proton NMR spectrum, in whic
f all proton multiplets collapse to sharp singlets at the chemic
shifts wy. Note that for each collapsed multiplet, will be
Note that implementation of Eq. [25] is trivial onlydf = O degenerate so that the corresponding eigenvectors will not
or if the eigenvaluew,, is not degenerate, as in these casesitomatically orthogonal, requiring the use of Eq. [27].
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Given a projection vectop, Eq. [24] defines a variational [27f i, 27fmad- EVen though it is numerically more efficient
eigenvalue problem foo,(p) as well as for the frequency to transform the Krylov basis only along the long dimensions
projectionswy. Notably, the amplitudes, are notobtained to make the appearance of the following expressions mo
variationally, e.g., by solving a least-squares problem,@md compact, we consider Fourier transformation of the Krylo
not depend on the computed frequencies. This makes FOMsis along all the D dimensions (the transformation along
quite different from all other methods of spectral analysis. Féshort” Ith dimension being done witk,,,, = M, + 1 and the
instance, the FFT corresponds to solving a variational probléth frequency window corresponding to thi Nyquist range),
for the amplitudes while fixing an equidistant frequency grid,;

LP me_thods sqlve a va_lriational problem fo_r the prediction W (g) = W(¢y, ¢, .. ., ¢p)
coefficients which can in turn be used to find the spectral
parameters by solving two more least-squares problems. = 2 e™d()
Equations [23]-[30] are working expressions and can, in n
principle, be used as are to obtain the estimates of the frequen- Ms M2 Mo
cies wy and amplitudesl, for any D-dimensional signal and = ginimes ginzrzez 2 eimmed(f),
projectionp. Various numerical methods are available to solve n=0 n2=0 np=0
the generalized eigenvalue problem, Eq. [24], our method of 27 min < @ < 277 e [32]

choice being the QZ algorithn2q) for complex general ma-

trices, which is computationally competitive and accurate LFhe resulting Fourier basi#() in the D-dimensional window

the case of ill-conditioned or even singular matrices. Howevey, o sizeK,, = Ky X Ko X -+ X Ko and is much

the obvious te_chmcal dlfflcglty, which 'S,Deven worse than 'Wmaller than the original Krylov basis. As was argued for th

the ;D case, IS th_at the S'ZMK’V_"’V ~ 27 X N, Of the 1D case B, 4, 7), the Fourier subspace is ortycally complete,

matrices involved is hardly feasible for any reasonably Iarg%. it is “good” for a small subspace of eigenvectors corre

multidimensional signal_:(ﬁ) Wit.h a tgtal OTN"’“" R Nl_ X spo,nding to the chosen frequency window. That is, it is ex

Np - X No data points. This dn‘flc_ulty IS r_es_ol_ved in the ected that thos®’,, which are simultaneously the eigenvec

next section, where a much more efficient basis is implemented. ¢ o operator€, with eigenvaluess, = 27f, — vy

to solve the elgeqvglue prob_lem_. . . : atisfyingf i, < fu < fimae | =1, 2, ..., D, can be expanded
A conceptual difficulty, which is not obvious, is associate the window basis as

with the construction of the complete line list{ ®,}, which

implicitly requires the assumption thatB resulting from the .

solution of Eq. [24] for a particulap, is simultaneously an Yy = z [Buls¥ (@),

eigenvector of Eq. [24] with any oth@randd. Only with the ¢

latter condition satisfied, at least approximately, can the dif- ) o )

ferent componentso, be “coupled” to form the eigenfre Where asin Eq. [32] the summation is carried out oty =

quency vectoy, = (0, W - - . , ©p). Unfortunately, this Kiwin X Kawin X+ =+ X Koyin vaIue; of¢. The numbeK ., of

is not generally the case unless either a model sig(@) the frequency valueg, in thelth window does not have to be

exactly satisfying the form of Eq. [2]1@) or an experimental &N adjl_JstabIe p.aramete.r of the method. .It.is u;ually EhOSt

signal with high SNR %, 6) is considered. a}ccor_dmg to th_enfgrmatlon contenbf. the flmte s_|gnalc(n)
Another reason foB, not being a unique eigenvector may(Le., its extension in th(i corresponding dimension) or that «

be due to a degeneracy of the eigenvalu§d). This can easily the Krylov subspace®(R)} (4),

occur in NMR spectra with cross peaks. Although, with high

SNR, an otherwise degenerate spectrum still yields a unique Kiwin = (M + 1) (fimax = fimin) 71, [34]

2D line list, for instance, by the simultaneous diagonalization

method of Ref. 9), the latter would hardly become the methodvith p being usually chosen between 1 and 1.2. The maximu

(33]

of choice in the case of low SNR. Kiwin IS €qual toM, + 1 (the number of Krylov basis functions
We will revisit this problem in a subsequent section. in thelth dimension) which would correspond to the maximun
possible frequency interval, namely, the spectral widtl

FOURIER BASIS (Nyquist range), SW= 1/7,. Note that for long dimensions

the frequency interval is always chosen to be much less th
Our goal in this section is to solve Eq. [24] for a possiblyhe spectral width, so th#,,,, < M,. This means that we do

very large data sef(i). The solution of the problem is essennot usually use the total information content of the signal, th
tially analogous to that implemented in the 1D ca3e4( 7). price to pay for both the enormous reduction of the numeric:
Namely, we want to introduce &ourier basisalong each effort and the necessity to make the algorithm numericall
“long” dimension n, (where the largeM, causes the total stable.
Krylov basis to be large) by taking a small setkf,, equi Implementation of the Fourier basis is analogous to that
distant frequenciesp, within a chosenfrequency window Refs. @, 7) and for the D= 1 case the resulting expressions are
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equivalent. The corresponding matrix elementsUgf) are The transformation along, is independent of the other
obtained by using the definition of the Fourier basis, Eq. [33hdices, so implementation of Egs. [37]-[39] is straightfor-

and the result of Eq. [23], ward. As such forp, # ¢j, | = 1, 2, ..., D we can write
(VD) = (¥(&)|0(P)¥(§") VP = 2 ... 2
01=0,1 op=0,1

= > > c(A+n +penee  [35]
Y gloln(Mi+1) (g~ g+ ]

D
X |:l_[1 S 1 — einlel-¢n

where as in Eq. [32] the multiple summations are carried out

overn,n =0,1,...,M, foreachl =1, 2,...,D. (o1 )M (eo+DiMp

Equation [35] is, in principle, a working expression, al- X X ... 2 ec(h+p).
though quite expensive to evaluate numerically. Fortunately, m=0i(M1+1) no=oo(Mo+1)
we can get rid of half of the summations in Eq. [35] by first [40]
noticing that the double-Fourier transformation along each
dimension is identical to that of the 1D signdl, {): As explained above, the singular cases are handled using |

[39]. For example, forp, = ¢} Eq. [40] is rewritten as
UG aP o D0 e 0 el )

MM [U(f))]zp:p' = E Ce 2
n=0 ni=0 D _ glalnMi+ D (ei—e)+ 7]
X...c(...,m+n+p,...), [36] X ES 1 — gne—e)
where variables irrelevant to thth dimension are suppressed. % o (M, — [M, — ny| + 1)
Now substitutingn, — n, + n| and then evaluating the sum “~ ! o
overn| we obtain !
(o2+1) M2 (op+1) Mp
X > L. D> e+ p),
U( L plv .. )( PR P | G IR | n2=o2(M2+1) np=op(Mp+1)
R eim[ﬂ(MlJrl)(@Df*(Pl)*W] [41]
T S E 1— eiﬂ(tpw'ﬂpl)
@1=0,1 with similar expressions to treat other singularities. Finally fo
(@M ¢ = ¢, i.e., the diagonal elements of thematrix, we have
X > emec(...,n+p,..), [37]
m=o1(Mi+1) 2My
i [U(P)]ee= 2 (My— My~ ny| + 1)
where S, defines the symmetrization operator over the -vari n=0
ableseo,, o¢r: 2M;
X > (My— My — ny| + 1), ..
Sa(en, @) = de, @) + glel, @) [38]
Mp
_ _ NSa(R + B

Equation [37] is correct for all choices @f ande/|, except for X 20 (Mo = [Mp — no| + 1)e"?c(i + p),
the singularity arising atp, = ¢;. To obtain a numerically .
practical expression for this singular case we evaluatethe [42]

| limit leading to
i 9 which is simply a D-dimensional FT of the sigreh + p) with
U a symmetric triangular apodization function in each dimension
oo P ) e Equation [32] defines the transformation from the Krylov vec

™M tors d(n) to the Fourier basid¥’(¢). According to this transfor-
=... > e mation the formula for the amplitudes, Eq. [26], is rewritten as
n=0
XM= M =n|+1)...c(....,n+p,...). Mio Ve Mo

VA= 2 [Bd: 2 2 ... 2 e™e(R),  [43]
[39] I3 ni=0 nx=0 np=0
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where the coefficients of thigh eigenvector,B,] ;, resulting complete and solving Eq. [24] with a suitalfieshould lead to
from Eq. [24] define the expansion of thth eigenvectol', in  a unique set of eigenvectoB. These eigenvectors then-di
terms of the Fourier basis functions(¢), Eq. [33]. agonalize the matrix of any evolution operator, in particular
To conclude this section we mention some obvious technighbt of U, = e "%, Therefore we have,
aspects of implementing Eqgs. [40]-[43]. .
First, the multidimensional FTs a{i) should be carried out g imok — BUiBx
by appropriate FFT algorithms, which can be implemented BxUoB’
using the globally equidistant grid of frequency poirtsin
eachlth dimension.
Second, once FT of(i) is computed, FT ot(i + p) is
obtained recursively. For example, this can be seen from
relationship

[45]

which, in principle, yields the whole line listd,, d,}. Again,
one has to be careful when dealing with degenerate frequenc
, typical for some NMR experiments like 2D COSY with
‘§= (0, 7,) orp = (74, 0). In Ref. @) the authors proposed
a procedure called “simultaneous diagonalization,” based ¢
the Jacobi method, to overcome the degeneracy problem. Ho
ever, such a degeneracy could be avoided by, e.g., avoiding 1
wrong choices for the projection vectpior by choosing small
windows allowing only nondegenerate frequencies. Therefol
+ ¢c(M + 1)eMe, degeneracy alone does not make the solution nonunique
long as Eq. [2] holds. Another question concerns the robustne
Third, Eq. [43] is computationally very inexpensive as thgf the FDM solution with respect to small variations of the
corresponding Fourier sum has been already computed to eyigbut data (e.g., an experimental noise) that destroys the for
uate U, (see Eq. [40]). Note, however, that there exists @ Eq. [2] corresponding to a finit&. It is definitely quite
potentially more accurate expression for a coeffictgntvhich  robust for 1D signals4, 7), where the problem of “coupling
depends on the corresponding frequency ve&ip(12). the frequency components” does not occur. For I it seems
not to be the case. In practice, only a signal with high SNR th:
EXISTENCE AND UNIQUENESS OF THE SOLUTION fits Eq. [2] well can be inverted to yield a reliable line list as we

As we already mentioned, Eq. [2] corresponds to a nonlinedfowed in Refs., 6, 12. Note though that even with mod-
multiparameter optimization problem. Uniqueness or even exRfate noise Eq. [45], beingonvariational,is relatively inac-
tence of its solution is not always obvious and, in fact, for gUrate since the eigenvectdsg are very sensitive to the small
general finite D-dimensional signal we can only show that a 1Y§riations of thel matrices. In Refs.g, 6, 19 a somewhat
p-projection of the line list exists due to the existence of tH&Ore sophisticated procedure was implemented to assjgn
corresponding solution of Eq. [24]. This is already a very impof? the rightwz,, each computed variationally. This procedure
tant aspect as it allows us to obtain useful spectral informati¥f@S based on using several setg({p), di} with different p
from the multidimensional signals which would not be availabf@nd the relationi(p + @) = u(p)ux(@). We do not describe
otherwise. Of course, the projected line list, i.@{ dJ, k = 1, thls procedure_ in detail since it will also fail for very noisy
2,....K, is still a function of the size of the signal. In particularSignals and since we have found a better solutibf) (e-
the total number of polds that can be produced by FDM depend§cribed below. _ _
on the signal sizeNgw = Ny X N, X --- X Np. The reason For general noisy signals the assumption that the Hamilt
simply is that, due to the noise always present in the experimerit@ns {1, commute does not imply that their finite matrix
signal, it is never a particular finite sum of sinusoidal terms witi¢presentations do, and so the eigenvector sets for differen
fixed K as manifested by Eq. [2]. The numbéis dictated by the may differ significantly. In such a case the simultaneous d
information content of the finite signal. In the FDM frameweétk agonalization based on the Jacobi method of R&fn{ay be
is limited by My, (See Eq. [21]), on one hand, but generallyne way to attack the problem. However, there is no guarant
cannot be less thaM,,, due to the noise. Thus for a generathat this method converges at all, as it is essentially a nonline

E eimpc(n +1) = [E eimpc(n) - C(O)]e7i¢

n=0 n=0

noisy signal we can safely write optimization of the kind we are trying to avoid by using only
linear algebraic techniques to fit the data. In the next section v
K = Miyioy = 2 ° X Niguar [44 describe in detail another approach for dealing with the san

problem which has proven to be quite reliabld)(

Equation [44] essentially eliminates the problem of choosing
the “right” K, so typical in all othehigh-resolutionmethods
based on a parametric fit.

It is useful to mention the case when the complete soluti(llb Projections and Cross Sections
(in addition to the projections) is unique. If a signal does have
exactly the form of Eq. [2] with particular fixed = K, and For a natural time vectds calculation of the projection is as

zero noise, then foMy,,, = K the Krylov basis becomes simple as solving Eq. [24]. However, as we already discusse

SPECTRAL RECONSTRUCTION USING GREEN'’S
FUNCTIONS: THE GENERAL CASE OF NOISY SIGNALS
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above, if it is not one of the trivial projections corresponding tplementation of the Green'’s function approach is based on t

diagonalizing one of the basic evolution operatdrsa useful following steps:

projection might not correspond to a natupalvith all com-

ponentsp, being both integer and small (to avoid the foldinq

problem) as the time incrementg are often quite different. 0
One nontrivial and very useful example ofgprojection is

the 45° projection of a 20) spectrum, in which the proton UBik = UUoBu,

multiplets collapse to single peaks at the frequencies of the BiUBy =1, [51]

proton chemical shifts. As we demonstrated in Ré0)(a

highly resolved absorption-mode 45° projection can be oR; gptain the eigenvaluas, = e '"“* and eigenvectorB.

outlined by Egs. [23]{30]. In the FFT framework construction ofy( p) in the basis of¥(3),

absorption-mode 45° projections is impossible, so only skew 45°
projection of an absolute value 2Dspectrum 16) can be used. 1

In the following we generalize the procedure of calculating Q; = - > pn&,
the 1D projections developed in Rel(Qj for the 2DJ exper- 1
iment to the case of arbitragyand D. We slightly deviate from 1 .
Ref. (10) and the above derivation, although conceptually the - 2 pim 2 o UoBiB U,
methods are similar. ! K

First we introduce th@-projection of the Hamiltonian vec- ) ) A
tor in analogy with Eqg. [10], whereQ), are the corresponding matrix representation8 pf

in the Fourier window basis.
(iii) Solve another generalized eigenvalue problem

(i) Solve independently D generalized eigenvalue problen
ri=1,2,...,D,

1 . 1
Qr):;poE;l [46]

- M
°
e
>

erBpk = wpkUOBr)k,

T —

Clearly we can write BolJoBpc = 1. [52]
. (iv) The frequencieswy and the amplitudesl; (see Eq.
QY ok = 0pcY i [47]  [43]) are then used in either Eq. [8] or Eq. [9] (with replaced

by dg) to compute accordingly;(F) or As(F).
where for this general case we have also labeled the eigen-
functions of 1, with the additional subscripp emphasizing . 'ote that we do not need to use Eq. [27] heréJasippears
that they could be different for different Hamiltonians (due t§! the right-hand side of the generalized eigenvalue proble
possible degeneracies or noise), although we still assume tffl- [92]), which requires only normalization of the eigenvec

these Hamiltonians commute with each other. tors By . . .
We can now introduce @Green’s functionor resolvent 1 he outlined procedure is numerically stable and fast. Th
operator Q(F) associated with). as fact that there may be many degenerate frequencies amg@ng
p

corresponding, for instance, to the collapsed multiplets in tf
1 Y00 (Y 5 45° projection of a 20J spectrum, does not make eitHe(F)

éﬁ(p) = - = M, [48] or As(F) nonunique. Generally, if there are several degenera
Oy —2aF 7 o 27F eigenvalueso,, corresponding to a particular collapsed multi

plet, the individual eigenvector8; are not well defined.
where we also used the spectral representation form assuntifyvever, the whole degenerate subspace of these eigenv

that the eigenfunction , are orthonormalized as in Eq. [12].tors, here called theingle-multiplet subspacés unique, sub-
Note that if we setl, = dy, = (®(0)|Y )2, the 1D complex ject to an orthogonal complex symmetric transformation withi
(or absorption-modep-projections of the spectrum, Egs. [8]this subspace. This is sufficient for the correct spectral reco

and [9], can now be expressed via the matrix element 8ffuction using Egs. [8] or [9] because the sum of amplitude
Gp(p); 2« dg over the single-multiplet subspace is invariant under an

orthogonal transformation of the eigenvect&g within the
1(F) = (P(0)]Gy(F)®(0)), [ag) Subspace. "
Since the eigenvectors within a degenerate subspace are
As(F) = Im{I5(F)}. [50] defined they cannot possibly be used in Eq. [45] to estimate tl
eigenvaluesu, = e ", However, as we demonstrated in
Given matrix representationg, for| = 0, 1, 2, ..., D in Ref. (10) for the case of 200 spectroscopy, one can uncover
a Fourier window basi&(¢), Egs. [40]-[42], numerical im- the multiplet frequencies along (e.g., the acquisition time
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dimensiont,) by solving the corresponding eigenvalue probThis follows from the relation

lem, Eq. [51], with the matrice8), and U, evaluated in the

reduced basis of the single-multiplet subspace. The resulting (Y Ya) = BLUoB o, [57]
eigenvaluesi, = e'"“* then all belong to this multiplet while

the eigenvectorB,, according to Eq. [43] define the indiVidualwhich is, in turn, a consequence of Eq. [54]. For a noiseless sigr

amphtudes_dlk. These can b.e use_d to construct the mLIIt'pl%\tlith no degeneracies the two sets of eigenvectors are exactly
cross sections along thén dimension £0). same and the cross-amplitude mabiy can be rearranged into a
diagonal form. In such a case Eq. [55] boils down to Eqg. [6]. It
general, however, it is not diagonal due to degeneracies or no
or both. It is easy to see that in the case of a perfect noisele

In this subsection we explore the possibility of constructing signal, when a simultaneous diagonalization and computation o
multidimensional spectrum in the situation when the line lisinique set of eigenvectors is, in principle, possible, Eq. [55] take
{®, dg is not unique or, at least, its generation is very difficultare of the degeneracies, as it is invariant under orthogor
and therefore neither Eq. [6] or [7] can be used. As was alreagignsformations within degenerate subspaces of either of the
discussed, this ambiguity of the line list may be caused by eithgamiltonians(,, Q,. This means that for construction of a 2D
the existence of degenerate frequencies or, more generally,spgctrum we can avoid the conceptually nontrivial and comput
noise. We will show that in the frame of FDM a well-behavedonally time-consuming simultaneous diagonalization.
D-dimensional ersatz spectrum can be generated very efficientlyTo this end we give an example of a 2D double-absorptio
from eigenvaluesi, = e "* and eigenvectorB, computed by spectral projection modifying Eq. [55] accordingly,
solving Eq. [51]. Here again we do not require the D sets of
eigenvectors to be the same, a fact which is indicated by the 1
additional subscript neither do we make an attempt to construct A(Fy, Fp) = X Re{Dkk’}lm{_ZF}
a unique, albeit approximate, set of eigenvectors by solving the D kK @k ™
eigenvalue systems simultaneousdy. ( 1

An |th eigenvalue system yields its line list, i.e., the frequen- X Im{—ZF} . [58]
cies w, and the amplituded,.. The latter are obtained using @ar T2
Egs. [43] modified by adding the subscripti.e.,

Reconstruction of a Multidimensional Spectrum Using
a Multidimensional Green’s Function

Note also another possible double-absorption spectral re

M1 M Mo resentation,
\/CTKZ 2 [Bul; 2 E ce 2 e"ec(h), [53]
I3 n1=0 n2=0 np=0 Dkk' 1
A(Fy, Fo) = EE Im{ Wi — ZWFl}Im{ Wy — ZWFZ}'

whereB,, satisfies the relation
[59]
Yy = E [Blk]¢‘y(¢) [54]
¢ which coincides with Eq. [58] in the case of all real cross:
~ amplitudesD .
between the eigenvecto®, of U, and Fourier basis func- |tis worth noting that Egs. [55], [58], and [59] have, at leas
tions (). formally, direct product patterns while their derivation used th:
Generalizing Eq. [49] we can now write an example of @ssumption of Eq. [2] with a nondirect product pattern. How
2D complex spectral projection in terms of a 2D Green'gver, numerically most of the cross-amplitud®g are nearly

function (11), zero due to mutual orthogonality of most eigenvector pairs, <
that the two representations are nearly equivalent.
I(F4, Fy) = (®(0)|G1(F,)GH(F,) P (0)) Equations [55], [58], and [59] constitute a very importan
1 result as they allow the construction of unambiguous multidi
= (@(o)‘ _ _ cp(o)) mensional spectra. An example of implementing Eq. [59] to
O, — 27F; Q, — 27F, 2D J spectrum has been given in Rell1] and 2D HSQC
spectrum in Paper II.
=3 D , [55]
K (@y = 27F ) (wae — 27F,) Phase Correction of the Multidimensional Spectrum

As was shown in Ref.7) for the 1D case, FDM provides a
simple means to correct phase distortion due to an initial tirr
delay @ead timg¢ For a multidimensional signal this is also
Die = B1UoBae \dydae. [56] straightforward. As such, for the 2D case, Eq. [59] is modified &

with the cross-amplitudeB,, defined by
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Dkk'eitdlwlkJritdzwzk’ dk
A(Fy, Fy) = Im—————— I(F5, Fp) = . [62
(F1, Fp) E} { Wy — 27F, } (Fp, F2) Ek: (w1 — wa — 27F ) (w — 27F ) [62]
1
X Im ope — 275, | [60]  since implementation of this formula requires construction c

a 3D line list, we rewrite it using Green'’s functions similar to
those used above,

for time delays, andty, with zero time corresponding to the

first available signal data point. Equation [60] can be derived LE E.) = (BP(O)B(F)G.(E.) (0

by noticing that only the cross-amplitudé®,, should be (Fp Fo) = (2(0)[Gy(Fp) Go(F2) 2(0))

corrected using 1

- (qy(o)‘ ~ -
Qﬁ_ 27TF‘3 QZ_ 2’7TF2

®(0) |,

Dkk' N Dkk/eitdlﬂllk+ild2ﬂ12k" [61] [63]
(3-1)D Simplification of 2D Spectra
o _ . where the first Green'’s function corresponds to the 45° projel
Because multidimensional FDM works with the entiNg,, tion in the 2DJ plane withp = (4, 0, —1,) andQ. = 0. —

- 1y Y, 1 P 1

= Ni X N, X --- X Np data set, useful projections can b_?)& while the second projects to the carbon-13 chemical shi
obtained in which a very short additional time dimension Simension

used to simplify a lower dimensionality spectrum. We have Given matrix representations, for | = 0, 1, 2, 3 in a

shown how a 1D proton-decoupled proton spectrum can pg, ier window basisl(¢) (Egs. [40]-[42]), implementation
obtained from a 20J experiment using only four time points ¢ Eq. [63] is summarized by the following steps
in the J dimension 10) and then directly calculating the 45° ' '

projection. This principle is quite general and very useful. For (i) Solve independently the three generalized eigenvall
example, as shown in Paper I, a proton—carbon HSQC speesblems withl = 1, 2, 3,
trum can be condensed tosangletHSQC spectrum, in which
each CH pair gives rise to a sharp singlet, by a 45° projection UBy = uUgBy,
of a 3D HSQCJ spectrum. This particular experiment makes
no sense in the context of FT processing because (i) a large
number of increments (e.g., 32—64) in thelimension would ) . . ,
be required to achieve the required resolution, leading to ¥hobtain the eigenvaluas, = e """ and eigenvectorB,.
unacceptably long experiment time; and (ii) the phase-sensitivelll) US€ {@u, Bu} and {wy, By} to construct a matrix
45° projection vanishes while the absolute-value projectidRPresentation of}, = €, — (s in the basis of¥(¢),
shows poor resolution and lines with very wide wings. As such,
each “singlet” in the FT spectrum can give contours as wide as Q=0 — Q4
the original multiplet that gave rise to it. _ T T
By contrast, a usefigingletHSQC spectrum can be obtained =Y Ek: (@1BuB 1~ ©3B3Ba)Uo
using onlytwo time points in theJ dimension when FDM is
employed. Very narrow absorption-mode resonances are ob
tained, increasing the resolution substantially. As it is unnecessal
to record both N- and P-type spectra, #iegletHSQC spectrum
can in fact be obtained in the same total time as a conventional
phase-sensitive HSQC spectrum (using FT processing). BhaUoBu = 1. [65]
Let us introduce the following convention for the 3D HSQC
spectrum, in which th&; X F, plane corresponds to the HSQC (iv) To evaluate the complei(F;, F,) and double-absofp
spectrum, while the proton multiplets are rotated by 45° in thon A(F,, F,) singletHSQC spectra, use the formulas
F, X F; plane. In particular, the 2D part of the whole 3D signal

BI-II—<UOBII< =1, [64]

iii) Solve another generalized eigenvalue problem,

QﬁBﬁk = wrijoBr)k,

c(n,m1, Ny, 0), roughly, corresponds to the conventional 2D Due
HSQC signal, while(n,,, 0, n;7;), the conventional 2D signal I(Fp, F2) = > (0 — 27F ) (wge — 27F,) " [66]
of the protons directly bound to carbon-13. ki 2P PR 2

A 2D complexsingletHSQC spectral projection, where the KK
proton multiplets of the conventional HSQC spectrum are ARy F) = E Im{ o — ZqTFﬁ}
collapsed into singlets at the proton chemical shifts, is here
formally defined as the following 2D projection of the 3D > Im{ 1 } [67]
spectrum, 2
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where the cross-amplitudds,, are When multidimensional NMR signals are processed with FDM,
natural parameter for averaging is the maximum processing tir
D = dsdaB 1UoB o, along the acquisition time dimension.
M Ve M Note, though, another more elegant procedure pgedo-
o _ iy noise averagingdiscovered after this paper was submitted fo
[dsy = B ¢c(h C . " o
VG % [Bods 20 EO 20 ee(n), publication. It is based on exploiting the great sensitivity of the
1= 2= 3= . . . .
My Ms Ma output (ersatz spectrum) to the small variations in the inpt
\@k =3 [Bads SOS S eltec(h). (time 5|gnfll). Namely, perturbatlon_ of the S|gnal by a smal
s =0 Np=0 Na=0 amounté(n) leads to large fluctuationg\(F), in the output

FDM spectrum. This is schematically shown by the diagram

Analogous formulas apply to a double projection of a 4D signal
resulting in a simplified 2D spectrum. For example, as shown inc(f) + 8(7) |— [FDM|— [1,(F) = 1(F) + A(F)|. [68]
Paper Il a TOCSY spectrum, in which all 2D multiplets are

completely decoupled, collapsing to singlets, can be obtained-gye fiyctuations\ (F) have essentially random appearance, s
recordmg adqmonal two datg sets with a smglmgrer.nent N the artifacts are removed by averagilrgglf) over sufficiently
each dimension and then using a double 45° projection. many realizations of the pseudo-noi8gh). It turns out that
there is a great flexibility in choosing the distribution and the
REDUCTION OF NOISE ARTIFACTS BY FILTER amplitude of the pseudo-noisén) (as long agd(n)) = 0 and
DIAGONALIZATION AVERAGING (|8(M)|?) is sufficiently large) to give unique and artifact-free
averaged spectrum.

An application of multidimensional FDM to noisy data is For both types of the FDM averaging described above the b
never free from imperfections, such as spurious spikes, or mgws is that the computational effort is now multiplied Xy,
well converged amplitudes, and their phases. In addition, Eqthe number of the single FDM calculations, while sometime
[59], for example, should formally lead to a direct produdgading to only moderate improvements (a factondRepy re-
pattern with possible peaks at all point®.{, w,) with k, duction of the artifacts, assuming their random appearance). T
k'=1,2, ... Ku,within each processed frequency windowgood news is that a single FDM calculation is reasonably fast
Although the corresponding amplitudé&s, must ideally be thatwe can still afford such an increase of the CPU time, even
zero for most cross peaks, they are not in practice, i.e., thet expecting a huge improvement. Thus FDM averaging shou
ersatz spectrum constructed using Eq. [59] does contain méma/customary in all multidimensional FDM calculations unles
artifacts, which could, in principle, be big depending on ho®@ne finds a less time-consuming solution in the future.
well the model of Eq. [2] fits the data. It might seem, by
obvious analogy with various implementations of LP, that one SUMMARY
could improve the appearance of the FDM ersatz spectrum by
analyzing each spectral feature and deciding according to somé&he present paper describes several important developme
criterion whether it should be accepted or discarded. Unfortaf the multidimensional FDM. Expressions for construction o
nately, our experience is quite negative in this regard, as aalysorption-mode spectra from purely phase-modulated NM
such method seems to work only with high SNR and in the casignals based on pure linear algebra are derived. In particul
of narrow and isolated resonances. In this case the extra pelaké/ allows direct calculation of various reduced dimension
are completely unobtrusive in any event. Hence, we give up thity spectral projections leading under certain conditions t
idea of throwing away poles. significant simplifications of the spectra and avoiding calcule

However, another much less aggressive and seemingly simipd& of both the whole multidimensional spectrum and the
procedure to improve the appearance of the ersatz spectra existaplete multidimensional line list. The latter seemed to be
(7,1). It is based on multiple applications of FDM to nestegrerequisite in the earlier works on 2D FDM<6, 9.
subsets of the same signal, using a progressively larger totaEven though the multidimensional line list, i.e., the sét{
number of time points in successive calculations. The idea herdj$ with ©, = (0, wa, ..., wp), IS highly desired, its
that the true signal poles are more stable with respect to the fittc@nstruction for severely truncated and noisy signals may |
parameters than the noise poles and artifacts. In particular, toenplicated by some conceptual problems originated from tt
phases of the unwanted features are sensitive to any change ofileefined nature of the HIP, Eq. [2]. In the FDM framework
signal size, leading to their random appearance in the ersditz problem of constructing the multidimensional line list
spectra. As such they can be “averaged out” by summing sevemases when the computed eigenbas¥s ) of the evolution
ersatz spectra computed from the signals of various sizes. Properatord), = e '™ (where thd labels the time or frequency
ably other FDM parameters could be used in the same contextiihension) appear to be incompatible with each other, prever
their variation affected the appearance of the noise and artifagtg} construction of a unique basis sét' §. An Ith basis set
although we found that varying signal size is a robust proceduvégith the corresponding eigenfrequencieg can unambigu
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ously define only théth projection {w,,

d,} of the line list,

355

of the problem. Because these artifacts are very sensitive to eitl

while the problem of coupling the different projected frequerparameters of the FDM calculations or small variations in th
cies wy into a single vectorw, remains unsolved for the input data, averaging allows us to reduce them below the acce

general case of truncated and noisy data.

able level. Unfortunately, the FDM averaging is quite expensiv

The new Green’s function approach to construct the FDRhd therefore might not be the optimal solution.
spectra, e.g., based on using Egs. [59] and [67], overcomes th&o conclude, in the future we will revisit these issues
problem of ambiguity of the line list. However, the resultinghamely, the line list construction and the problem of avoiding
spectra still have some artifacts due to the said ill-defined natureémerically expensive FDM averaging.

APPENDIX

Some Important Notations and Definitions

A= (Ny71, N7y, . . ., NpTp)
c(n) = c(ny7q, Ny75, .. ., NpTp)
c(n) = 2 die M= 2 deexd — E T
=1
(_;)k = (wlka Woyy - - 1ka)v wy = 2af, — |'Y|k
{o, di}
D
(F)=1(Fy, For .. Fo) = % dy H - 2775
dy B di
|p(F) - % ﬁ&)k/TmaX— 27TF - % (l)r)k - 27TF
(VD) = (D[W)
O = E wlk’Yk)(Yk’
k
[ aankA R
Q = (Qly QZ! !QD)
O(R) = e " = exyl —i E 7]
=1
u(i) = e ™ andY,
®(0) = 2 \dyY
k
c(f) = (P(0)|U(R)P(0))
®(n) = UR)P(@O),n =0,1,...,M,

Y= E [Bila® (1)

[U(®)]m = (@A)|0E)P(M) = c(f + W + p)
[Udl o = (©(R)[D(M)) = c(i + )

U(P + @B« = u(p)U(@)By, BiUBy = 1
Vo = (Y @(0)) = > [BiJsc(i)

il
V@) =2 2 ... 2 ™)

Ni-0 N2-o0 Np=o

Y= 2 [Bk]¢‘b(¢)

[U(fi)]iw = (Y(@I0@E¥ (@)
ﬁr) = 771 f’ﬁ = E w;sk|Yrsk)(Yak|
K

D-dimensional time vector
NMR signal defined on an evenly spaced D-dimensional time grid
D-dimensional harmonic inversion problem

Vector of complex frequencies
Line list of vector frequencies and amplitudes
A D-dimensional complex ersatz spectrum

1D spectral projection along vectpr

Complex symmetric inner product
Commuting complex symmetric Hamiltonian operators

Eigenvalues and eigenvectors ©f
Operator vector
Discrete time evolution operator

Eigenvalues and eigenvectors B{n)
Initial state

Quantum mechanical ansatz
Subspace of Krylov vectors
Expansion of the eigenvectors in terms of the Krylov vectors

Matrix elements of the evolution operator in the primitive Krylov basi:
Overlap matrix elements

Generalized eigenvalue problem with the normalization condition
The amplitudes in terms of the eigenvectors

Fourier basis function defined @&t= (¢, ¢, . . ., ¢p)

Expansion of the eigenvectors in the Fourier basis

Matrix elements of the evolution operator in the Fourier basis
p-projection of the Hamiltonian vector and its spectral representation
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&.(F) = B 1Y 5 (Y i p-projection of the Green’s function and its spectral representation
’ Oy — 27F [ opc— 27F
I5(F) = (‘1’(0)|ér)('f)‘1’(0)1 1D complex spectral projection alorigusing the Green’s function
I(F1, Fy) = (®(0)|G.(F1)Gy(F,)®(0)) A 2D complex spectral projection using the 2D Green'’s function
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